organic compounds
2-Oxo-2H-chromen-3-yl benzoate
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et de Matériaux, Equipe de Chimie, Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021, Burkina Faso
*Correspondence e-mail: kamborene@gmail.com
In the title compound, C16H10O4, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.015 Å) and the benzoate group is 83.58 (9)°, which compares to a value of 81.8° obtained from a DFT calculation at the B3LYP/6–311 G(d,p) level. In the crystal, C—O⋯π and C—H⋯π interactions and aromatic π–π [Cg⋯Cg = 3.7214 (14) and 3.7059 (14) Å] stacking generate a three-dimensional network.
Keywords: crystal structure; density functional theory; packing features.
CCDC reference: 1547586
Structure description
Coumarin-based ion receptors, fluorescent probes, and biological stains have extensive applications in monitoring et al., 2013; Guha et al., 2012). As part of our ongoing studies in this area, we now present herein the synthesis and structure of the title compound (Fig. 1).
as well as accurate pharmacological and pharmacokinetic properties in living cells (ChenAs expected, the coumarin ring system is almost planar, the maximum deviation from the plane of 0.022 (2) Å is for atom C9. The torsion angles C10—C8—O4—C7 [107.8 (2)°], C8—O4—C7—C6 [−170.95 (15)°] and O4—C7—C6—C1 [176.48 (15)°] are typical of the torsional freedom permitted by the rotation of the benzoate group at position 3. The greatest conformational freedom of the molecule resides, therefore, in the benzoate bridge of compound, composed by C8—O4—C7—C6.
In the crystal, there are C—H⋯π and C—O⋯π contacts present (Table 1 and Fig. 2) and also π-π- stacking interactions. The H⋯π and O⋯π separations are comparable with those cited by Imai et al. (2008) from a database analysis, which concluded that such interactions were attractive, with interaction energies of ca 2 kcal mol−1, comparable to those typical of weak hydrogen bonds. These interactions result in the formation of zigzag chains propagating along the c-axis direction. The supramolecular aggregation in the crystal is completed by the presence of slipped parallel π–π interactions, forming columns along the c-axis direction. The most significant interactions are Cg2⋯Cg2i = 3.7216 (14) Å [inter-planar distance = 3.4024 (9) Å, slippage = 1.508 Å, where Cg2 is the centroid of the C1/C2/C4–C6 ring; symmetry code: (i) −x, 1 − y, 1 − z] and Cg2⋯Cg2ii = 3.7058 (14) Å [inter-planar distance = 3.4309 (9) Å, slippage = 1.401 Å, symmetry code: (ii) 1 − x, 1 − y, 1 − z].
Synthesis and crystallization
In a 100 ml flask with a water condenser were introduced successively 25 ml of dried diethyl ether, 6.17 mmol of benzoyl chloride and 3.2 ml of dried triethylamine. While stirring strongly, 6.17 mmol of chroman-2,3-dione were added in small portions. The reaction mixture was left under agitation for 2 h at room temperature and then refluxed for 2 h. The mixture was poured in a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2-3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from a solvent mixture of chloroform–hexane (1:3, v/v). Yellow crystals of the title compound were obtained in a yield of 84%; m.p. 423–426 K.
Refinement
Crystal data, data collection and structure . Two reflections were omitted owing to bad agreement.
details are summarized in Table 2Structural data
CCDC reference: 1547586
https://doi.org/10.1107/S2414314617006630/hb4144sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006630/hb4144Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006630/hb4144Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C16H10O4 | Z = 2 |
Mr = 266.24 | F(000) = 276 |
Triclinic, P1 | Dx = 1.428 Mg m−3 |
a = 6.9243 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.7262 (8) Å | Cell parameters from 2675 reflections |
c = 11.8168 (6) Å | θ = 5.8–69.2° |
α = 84.550 (6)° | µ = 0.10 mm−1 |
β = 81.852 (6)° | T = 298 K |
γ = 83.023 (8)° | Prism, yellow |
V = 619.22 (9) Å3 | 0.34 × 0.12 × 0.06 mm |
Agilent Supernova Dual diffractometer with an Atlas detector | 2283 independent reflections |
Radiation source: sealed X-ray tube | 1724 reflections with I > 2σ(I) |
Detector resolution: 5.3048 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 25.6°, θmin = 1.8° |
Absorption correction: multi-scan (Crysalis PRO; Agilent, 2011) | h = −8→8 |
Tmin = 0.499, Tmax = 1.000 | k = −9→9 |
7628 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | All H-atom parameters refined |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.0998P)2 + 0.0263P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2283 reflections | Δρmax = 0.22 e Å−3 |
221 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methylene H atoms. |
x | y | z | Uiso*/Ueq | ||
H10 | 0.994 (4) | 0.658 (3) | 0.393 (2) | 0.068 (6)* | |
H4 | 0.825 (4) | 0.121 (4) | 0.016 (3) | 0.093 (8)* | |
H3 | 0.789 (3) | 0.243 (3) | −0.168 (2) | 0.076 (7)* | |
H1 | 0.711 (3) | 0.728 (3) | −0.0468 (19) | 0.063 (6)* | |
H5 | 0.790 (3) | 0.285 (3) | 0.171 (2) | 0.068 (6)* | |
H2 | 0.731 (3) | 0.548 (3) | −0.202 (2) | 0.071 (7)* | |
H13 | 0.401 (4) | 0.916 (3) | 0.688 (2) | 0.073 (6)* | |
H16 | 1.079 (4) | 0.800 (3) | 0.565 (2) | 0.073 (7)* | |
H15 | 0.977 (4) | 0.946 (3) | 0.732 (2) | 0.083 (7)* | |
H14 | 0.634 (3) | 1.000 (3) | 0.791 (2) | 0.070 (6)* | |
O2 | 0.46650 (18) | 0.75322 (17) | 0.51161 (11) | 0.0538 (4) | |
O4 | 0.7627 (2) | 0.54314 (18) | 0.27349 (11) | 0.0618 (4) | |
O1 | 0.3793 (2) | 0.6280 (2) | 0.36899 (13) | 0.0666 (4) | |
C8 | 0.7208 (3) | 0.6366 (2) | 0.37014 (15) | 0.0543 (5) | |
C11 | 0.8071 (3) | 0.7664 (2) | 0.52978 (16) | 0.0518 (5) | |
O3 | 0.6978 (2) | 0.79125 (18) | 0.16416 (12) | 0.0661 (4) | |
C6 | 0.7503 (2) | 0.5198 (2) | 0.07680 (15) | 0.0496 (4) | |
C9 | 0.5118 (3) | 0.6699 (2) | 0.41218 (16) | 0.0532 (5) | |
C12 | 0.6084 (3) | 0.8027 (2) | 0.56933 (15) | 0.0495 (4) | |
C13 | 0.5431 (3) | 0.8890 (2) | 0.66733 (16) | 0.0570 (5) | |
C10 | 0.8604 (3) | 0.6801 (3) | 0.42525 (17) | 0.0561 (5) | |
C7 | 0.7320 (3) | 0.6361 (2) | 0.17134 (15) | 0.0522 (4) | |
C1 | 0.7338 (3) | 0.5970 (3) | −0.03279 (17) | 0.0553 (5) | |
C5 | 0.7800 (3) | 0.3397 (3) | 0.0954 (2) | 0.0618 (5) | |
C3 | 0.7787 (3) | 0.3156 (3) | −0.1056 (2) | 0.0686 (6) | |
C16 | 0.9429 (3) | 0.8200 (3) | 0.5925 (2) | 0.0639 (5) | |
C2 | 0.7489 (3) | 0.4928 (3) | −0.12395 (18) | 0.0636 (5) | |
C15 | 0.8781 (4) | 0.9067 (3) | 0.6904 (2) | 0.0676 (6) | |
C4 | 0.7933 (3) | 0.2371 (3) | 0.0027 (2) | 0.0718 (6) | |
C14 | 0.6802 (4) | 0.9404 (3) | 0.72688 (18) | 0.0650 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0468 (7) | 0.0646 (8) | 0.0492 (7) | −0.0038 (5) | −0.0054 (5) | −0.0045 (6) |
O4 | 0.0752 (9) | 0.0610 (8) | 0.0452 (7) | 0.0067 (6) | −0.0063 (6) | −0.0045 (6) |
O1 | 0.0644 (9) | 0.0749 (9) | 0.0638 (9) | −0.0119 (7) | −0.0162 (7) | −0.0064 (7) |
C8 | 0.0605 (11) | 0.0560 (10) | 0.0428 (9) | 0.0012 (8) | −0.0036 (8) | 0.0004 (7) |
C11 | 0.0512 (10) | 0.0528 (9) | 0.0500 (10) | −0.0037 (7) | −0.0073 (8) | 0.0024 (7) |
O3 | 0.0836 (10) | 0.0595 (8) | 0.0517 (8) | 0.0027 (7) | −0.0062 (7) | −0.0043 (6) |
C6 | 0.0390 (8) | 0.0595 (10) | 0.0498 (10) | −0.0045 (7) | −0.0047 (7) | −0.0052 (8) |
C9 | 0.0579 (11) | 0.0524 (9) | 0.0478 (10) | −0.0040 (8) | −0.0078 (8) | 0.0025 (8) |
C12 | 0.0527 (10) | 0.0478 (9) | 0.0467 (9) | −0.0050 (7) | −0.0075 (8) | 0.0040 (7) |
C13 | 0.0605 (12) | 0.0576 (10) | 0.0505 (10) | −0.0026 (8) | −0.0033 (9) | −0.0026 (8) |
C10 | 0.0484 (10) | 0.0640 (11) | 0.0513 (10) | 0.0006 (8) | 0.0000 (8) | 0.0003 (8) |
C7 | 0.0478 (9) | 0.0599 (11) | 0.0459 (9) | −0.0007 (7) | −0.0022 (7) | −0.0015 (8) |
C1 | 0.0512 (10) | 0.0630 (11) | 0.0520 (10) | −0.0079 (8) | −0.0064 (8) | −0.0046 (8) |
C5 | 0.0575 (11) | 0.0640 (11) | 0.0630 (12) | −0.0052 (8) | −0.0077 (9) | −0.0019 (9) |
C3 | 0.0591 (12) | 0.0822 (14) | 0.0702 (14) | −0.0132 (10) | −0.0087 (10) | −0.0273 (12) |
C16 | 0.0545 (11) | 0.0672 (12) | 0.0698 (13) | −0.0037 (9) | −0.0120 (10) | −0.0018 (10) |
C2 | 0.0588 (11) | 0.0835 (14) | 0.0515 (11) | −0.0140 (10) | −0.0076 (9) | −0.0113 (10) |
C15 | 0.0754 (14) | 0.0645 (12) | 0.0673 (13) | −0.0085 (10) | −0.0254 (11) | −0.0033 (10) |
C4 | 0.0674 (13) | 0.0594 (12) | 0.0905 (17) | −0.0071 (9) | −0.0110 (11) | −0.0156 (11) |
C14 | 0.0832 (15) | 0.0563 (11) | 0.0547 (11) | −0.0026 (9) | −0.0102 (10) | −0.0061 (9) |
O2—C9 | 1.372 (2) | C13—H13 | 0.98 (3) |
O2—C12 | 1.381 (2) | C10—H10 | 0.95 (2) |
O4—C7 | 1.374 (2) | C1—C2 | 1.390 (3) |
O4—C8 | 1.386 (2) | C1—H1 | 1.01 (2) |
O1—C9 | 1.202 (2) | C5—C4 | 1.398 (3) |
C8—C10 | 1.331 (3) | C5—H5 | 0.96 (2) |
C8—C9 | 1.462 (3) | C3—C2 | 1.361 (3) |
C11—C12 | 1.392 (3) | C3—C4 | 1.375 (4) |
C11—C16 | 1.398 (3) | C3—H3 | 0.96 (2) |
C11—C10 | 1.440 (3) | C16—C15 | 1.384 (3) |
O3—C7 | 1.191 (2) | C16—H16 | 0.95 (3) |
C6—C5 | 1.383 (3) | C2—H2 | 0.99 (2) |
C6—C1 | 1.387 (3) | C15—C14 | 1.378 (3) |
C6—C7 | 1.481 (3) | C15—H15 | 0.99 (3) |
C12—C13 | 1.384 (3) | C4—H4 | 0.90 (3) |
C13—C14 | 1.374 (3) | C14—H14 | 0.92 (2) |
C9—O2—C12 | 122.54 (14) | O4—C7—C6 | 111.59 (15) |
C7—O4—C8 | 115.88 (14) | C6—C1—C2 | 119.8 (2) |
C10—C8—O4 | 122.46 (17) | C6—C1—H1 | 120.5 (12) |
C10—C8—C9 | 122.72 (17) | C2—C1—H1 | 119.7 (13) |
O4—C8—C9 | 114.61 (17) | C6—C5—C4 | 119.3 (2) |
C12—C11—C16 | 117.93 (18) | C6—C5—H5 | 120.7 (13) |
C12—C11—C10 | 118.13 (17) | C4—C5—H5 | 120.0 (13) |
C16—C11—C10 | 123.92 (18) | C2—C3—C4 | 120.8 (2) |
C5—C6—C1 | 120.07 (18) | C2—C3—H3 | 120.4 (14) |
C5—C6—C7 | 122.07 (18) | C4—C3—H3 | 118.8 (14) |
C1—C6—C7 | 117.85 (17) | C15—C16—C11 | 120.0 (2) |
O1—C9—O2 | 118.14 (17) | C15—C16—H16 | 121.2 (14) |
O1—C9—C8 | 125.95 (18) | C11—C16—H16 | 118.8 (14) |
O2—C9—C8 | 115.89 (17) | C3—C2—C1 | 120.1 (2) |
O2—C12—C13 | 116.78 (16) | C3—C2—H2 | 120.4 (13) |
O2—C12—C11 | 120.95 (16) | C1—C2—H2 | 119.5 (13) |
C13—C12—C11 | 122.27 (18) | C14—C15—C16 | 120.4 (2) |
C14—C13—C12 | 118.38 (19) | C14—C15—H15 | 121.3 (15) |
C14—C13—H13 | 123.6 (14) | C16—C15—H15 | 118.3 (15) |
C12—C13—H13 | 117.9 (14) | C3—C4—C5 | 119.9 (2) |
C8—C10—C11 | 119.75 (17) | C3—C4—H4 | 122.2 (19) |
C8—C10—H10 | 119.1 (14) | C5—C4—H4 | 117.5 (19) |
C11—C10—H10 | 121.1 (14) | C13—C14—C15 | 120.99 (19) |
O3—C7—O4 | 121.79 (17) | C13—C14—H14 | 117.2 (15) |
O3—C7—C6 | 126.62 (18) | C15—C14—H14 | 121.8 (15) |
C7—O4—C8—C10 | −107.8 (2) | C8—O4—C7—O3 | 9.9 (3) |
C7—O4—C8—C9 | 77.3 (2) | C8—O4—C7—C6 | −170.95 (15) |
C12—O2—C9—O1 | 178.33 (15) | C5—C6—C7—O3 | −176.40 (19) |
C12—O2—C9—C8 | −0.2 (3) | C1—C6—C7—O3 | 2.6 (3) |
C10—C8—C9—O1 | −176.93 (19) | C5—C6—C7—O4 | 4.5 (2) |
O4—C8—C9—O1 | −2.0 (3) | C1—C6—C7—O4 | −176.48 (15) |
C10—C8—C9—O2 | 1.4 (3) | C5—C6—C1—C2 | −0.6 (3) |
O4—C8—C9—O2 | 176.31 (15) | C7—C6—C1—C2 | −179.64 (16) |
C9—O2—C12—C13 | 178.71 (15) | C1—C6—C5—C4 | 0.1 (3) |
C9—O2—C12—C11 | −1.4 (3) | C7—C6—C5—C4 | 179.10 (18) |
C16—C11—C12—O2 | −179.87 (16) | C12—C11—C16—C15 | −0.2 (3) |
C10—C11—C12—O2 | 1.7 (3) | C10—C11—C16—C15 | 178.12 (19) |
C16—C11—C12—C13 | 0.0 (3) | C4—C3—C2—C1 | 0.3 (3) |
C10—C11—C12—C13 | −178.40 (17) | C6—C1—C2—C3 | 0.4 (3) |
O2—C12—C13—C14 | −179.91 (16) | C11—C16—C15—C14 | 0.2 (3) |
C11—C12—C13—C14 | 0.2 (3) | C2—C3—C4—C5 | −0.8 (3) |
O4—C8—C10—C11 | −175.59 (16) | C6—C5—C4—C3 | 0.6 (3) |
C9—C8—C10—C11 | −1.1 (3) | C12—C13—C14—C15 | −0.2 (3) |
C12—C11—C10—C8 | −0.5 (3) | C16—C15—C14—C13 | 0.0 (3) |
C16—C11—C10—C8 | −178.80 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cg3i | 1.00 (2) | 2.94 (2) | 3.841 (2) | 150.5 (2) |
C9—O1···Cg1ii | 1.20 (1) | 3.15 (1) | 3.464 (2) | 95 (1) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the spectropole service of sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Chen, G., Li, H., Lan, R. & Li, J. (2013). Huaxue Tongbao, 76, 1002–1010. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guha, S., Dutta, M. & Das, D. (2012). J. Indian Chem. Soc. 89, 1603–1632. CAS Google Scholar
Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.