organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,7-Di­bromo-8-meth­­oxy­quinoline

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, and eDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 April 2017; accepted 28 April 2017; online 5 May 2017)

In the title compound, C10H7Br2NO, the meth­oxy C atom deviates from the quinoline ring system (r.m.s deviation = 0.003 Å) by 1.204 (4) Å. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Aromatic ππ stacking inter­actions [centroid-to-centroid distance = 3.7659 (19) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The treatment of several dihalogenated quinoline derivatives with NaOMe in basic solutions afforded mono methoxide analogues (Politanskaya et al., 2005[Politanskaya, L. V., Malysheva, L. A., Beregovaya, I. V., Bagryanskaya, I. Y., Gatilov, Y. V., Malykhin, E. V. & Shteingarts, V. D. (2005). J. Fluor. Chem. 126, 1502-1509.]). Our own work has studied the bromination reactions of substituted quinolines (Ökten & Çakmak, 2015[Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337-5340.]; Ökten et al., 2015[Ökten, S., Eyigün, D. & Çakmak, O. (2015). Sigma J. Eng. Nat. Sci. 33, 8-15.]). The present study presents the crystal structure of 5,7-di­bromo-8-hy­droxy­quinoline.

In the title compound (Fig. 1[link]), the Br—C bond lengths are 1.889 (3) and 1.901 (3) Å, and the Br—C—C bond angles vary from 117.6 (2) to 120.2 (2)°. The relatively wide range of Br—C—C angles may be due to the alternation of the bond-lengths in the bromine-substituted six-membered ring, which vary from 1.357 (4) to 1.425 (4) Å.

[Figure 1]
Figure 1
View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

The packing of the title compound viewed down the b axis is shown in Fig. 2[link]. The crystal structure features C—H⋯O hydrogen bonds, which lead to the formation of chains along the b-axis direction (Fig. 3[link] and Table 1[link]). Furthermore, aromatic ππ stacking inter­actions [Cg1⋯Cg2(x, 1 + y, z) = 3.7659 (19) Å; Cg1 and Cg2 are the centroids of the N1/C1–C5 pyridine and C4–C9 benzene rings, respectively] in the [010] direction are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1i 0.96 2.48 3.418 (5) 166
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
The packing of the title compound down the b axis.
[Figure 3]
Figure 3
View of the C—H⋯O hydrogen bonds along the b axis, shown down the a axis.

Synthesis and crystallization

5,7-Di­bromo­quinolin-8-ol (1.0 g, 3.3 mmol) was added to a solution of NaOH (132 mg, 3.3 mmol) in distilled water (100 ml). Me2SO4 (416 mg, 3.3 mmol) was added dropwise to the mixture at 263 K for 1 h while being stirred. The mixture was heated to 343–353 K for 1 h. After completion of the reaction (the colour of the mixture changed, 2 h), the solid was dissolved in CHCl3 (50 ml). The organic layer was successively washed with 10% Na2CO3 (2 × 15 ml) and 10% NaOH (2 × 15 ml), dried over Na2SO4, and the solvent was removed under vacuum. The crude material (2.12 g) was passed through a short alumina column and eluted with EtOAc–hexane (1:6, 150 ml) to obtain the title compound (1 g, 95%) as colourless needles, m.p. 372–375 K. 1H NMR (400 MHz, CDCl3): (δ/p.p.m.): 9.00 (dd, J23 = 3.2 Hz, J24 = 1.6 Hz, 1H, H-2), 8.52 (dd, 1H, H-4, J43 = 8 Hz, J42 = 1.6 Hz), 8.02 (s, 1H, H-6) 7.58 (dd, 1H, H-3, J34= 8.4 Hz, J32 = 3.2 Hz), 4.19 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) (δ/p.p.m.): 153.3, 150.9, 143.8, 136.1, 133.7, 128.3, 122.5, 116.3, 116.5, 62.1 (OCH3); IR (ν/cm−1): 2919, 2850, 1733, 1600, 1578, 1490, 1462, 1383, 1370, 1353, 1086.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H7Br2NO
Mr 316.99
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 16.158 (3), 3.9960 (6), 17.551 (3)
β (°) 115.316 (5)
V3) 1024.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.88
Crystal size (mm) 0.11 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.603, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 16733, 2048, 1604
Rint 0.052
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.03
No. of reflections 2048
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

5,7-Dibromo-8-methoxyquinoline top
Crystal data top
C10H7Br2NOF(000) = 608
Mr = 316.99Dx = 2.055 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.158 (3) ÅCell parameters from 5051 reflections
b = 3.9960 (6) Åθ = 3.4–25.1°
c = 17.551 (3) ŵ = 7.88 mm1
β = 115.316 (5)°T = 296 K
V = 1024.4 (3) Å3Needle, colourless
Z = 40.11 × 0.07 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1604 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.3°, θmin = 3.4°
Tmin = 0.603, Tmax = 0.745h = 2019
16733 measured reflectionsk = 44
2048 independent reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0218P)2 + 1.0875P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2048 reflectionsΔρmax = 0.55 e Å3
127 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1048 (2)0.9036 (9)0.4918 (2)0.0462 (9)
H10.0495841.0092120.4592730.055*
C20.1639 (2)0.8352 (9)0.4542 (2)0.0462 (9)
H20.1479080.8954250.3984880.055*
C30.2447 (2)0.6799 (8)0.5000 (2)0.0378 (8)
H30.2845480.6322270.4758410.045*
C40.2681 (2)0.5908 (7)0.58455 (18)0.0291 (7)
C50.2035 (2)0.6703 (7)0.61719 (19)0.0303 (7)
C60.2236 (2)0.5909 (7)0.70229 (19)0.0310 (7)
C70.3056 (2)0.4440 (8)0.75154 (18)0.0319 (7)
C80.3698 (2)0.3624 (7)0.72035 (19)0.0325 (7)
H80.4251180.2622330.7551950.039*
C90.3503 (2)0.4313 (7)0.63871 (19)0.0296 (7)
C100.0821 (3)0.4740 (10)0.7055 (3)0.0544 (10)
H10A0.0439280.5471000.7317770.082*
H10B0.0495470.4985010.6454820.082*
H10C0.0980830.2431690.7190590.082*
N10.12264 (18)0.8276 (7)0.57021 (17)0.0391 (7)
O10.16339 (15)0.6720 (6)0.73544 (14)0.0417 (6)
BR10.33604 (3)0.34441 (9)0.86565 (2)0.04622 (12)
BR20.43774 (2)0.30825 (9)0.59799 (2)0.04253 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.053 (2)0.037 (2)0.0093 (17)0.0060 (16)0.0077 (17)
C20.044 (2)0.059 (2)0.0286 (18)0.0025 (18)0.0091 (16)0.0056 (17)
C30.0425 (19)0.0418 (19)0.0315 (17)0.0029 (16)0.0180 (15)0.0033 (15)
C40.0312 (17)0.0264 (16)0.0299 (16)0.0036 (13)0.0133 (14)0.0053 (12)
C50.0294 (17)0.0296 (16)0.0303 (16)0.0028 (14)0.0113 (14)0.0025 (13)
C60.0337 (17)0.0314 (17)0.0329 (17)0.0017 (13)0.0189 (15)0.0057 (13)
C70.0399 (19)0.0312 (17)0.0262 (16)0.0016 (14)0.0158 (14)0.0009 (13)
C80.0296 (17)0.0302 (17)0.0351 (18)0.0031 (13)0.0113 (15)0.0015 (13)
C90.0310 (17)0.0290 (16)0.0340 (17)0.0020 (13)0.0190 (14)0.0037 (13)
C100.047 (2)0.058 (2)0.071 (3)0.0053 (19)0.038 (2)0.007 (2)
N10.0311 (15)0.0442 (17)0.0384 (16)0.0068 (13)0.0113 (13)0.0025 (13)
O10.0409 (13)0.0489 (14)0.0437 (14)0.0024 (11)0.0261 (11)0.0078 (11)
BR10.0589 (2)0.0512 (2)0.03332 (19)0.00706 (18)0.02425 (17)0.00917 (16)
BR20.0370 (2)0.0521 (2)0.0452 (2)0.00375 (16)0.02407 (16)0.00531 (16)
Geometric parameters (Å, º) top
C1—N11.316 (4)C6—C71.367 (4)
C1—C21.399 (5)C6—O11.368 (3)
C1—H10.9300C7—C81.403 (4)
C2—C31.356 (5)C7—BR11.889 (3)
C2—H20.9300C8—C91.357 (4)
C3—C41.411 (4)C8—H80.9300
C3—H30.9300C9—BR21.901 (3)
C4—C91.411 (4)C10—O11.428 (4)
C4—C51.425 (4)C10—H10A0.9600
C5—N11.364 (4)C10—H10B0.9600
C5—C61.422 (4)C10—H10C0.9600
N1—C1—C2124.0 (3)C6—C7—C8122.1 (3)
N1—C1—H1118.0C6—C7—BR1120.2 (2)
C2—C1—H1118.0C8—C7—BR1117.6 (2)
C3—C2—C1119.2 (3)C9—C8—C7119.2 (3)
C3—C2—H2120.4C9—C8—H8120.4
C1—C2—H2120.4C7—C8—H8120.4
C2—C3—C4119.8 (3)C8—C9—C4122.0 (3)
C2—C3—H3120.1C8—C9—BR2118.0 (2)
C4—C3—H3120.1C4—C9—BR2120.0 (2)
C3—C4—C9125.1 (3)O1—C10—H10A109.5
C3—C4—C5116.9 (3)O1—C10—H10B109.5
C9—C4—C5118.0 (3)H10A—C10—H10B109.5
N1—C5—C6117.8 (3)O1—C10—H10C109.5
N1—C5—C4122.5 (3)H10A—C10—H10C109.5
C6—C5—C4119.7 (3)H10B—C10—H10C109.5
C7—C6—O1120.4 (3)C1—N1—C5117.6 (3)
C7—C6—C5118.9 (3)C6—O1—C10114.9 (3)
O1—C6—C5120.6 (3)
N1—C1—C2—C30.3 (6)C5—C6—C7—BR1178.5 (2)
C1—C2—C3—C40.2 (5)C6—C7—C8—C90.1 (5)
C2—C3—C4—C9179.5 (3)BR1—C7—C8—C9179.8 (2)
C2—C3—C4—C50.3 (5)C7—C8—C9—C41.6 (5)
C3—C4—C5—N10.5 (4)C7—C8—C9—BR2178.6 (2)
C9—C4—C5—N1179.3 (3)C3—C4—C9—C8177.8 (3)
C3—C4—C5—C6179.2 (3)C5—C4—C9—C81.9 (4)
C9—C4—C5—C60.6 (4)C3—C4—C9—BR21.9 (4)
N1—C5—C6—C7177.7 (3)C5—C4—C9—BR2178.3 (2)
C4—C5—C6—C71.0 (4)C2—C1—N1—C50.5 (5)
N1—C5—C6—O10.3 (4)C6—C5—N1—C1179.3 (3)
C4—C5—C6—O1178.5 (3)C4—C5—N1—C10.6 (5)
O1—C6—C7—C8178.9 (3)C7—C6—O1—C10110.4 (3)
C5—C6—C7—C81.4 (5)C5—C6—O1—C1072.2 (4)
O1—C6—C7—BR11.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br20.932.803.210 (3)108
C10—H10B···N10.962.493.065 (6)118
C10—H10C···O1i0.962.483.418 (5)166
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-513. The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÖkten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337–5340.  Google Scholar
First citationÖkten, S., Eyigün, D. & Çakmak, O. (2015). Sigma J. Eng. Nat. Sci. 33, 8–15.  Google Scholar
First citationPolitanskaya, L. V., Malysheva, L. A., Beregovaya, I. V., Bagryanskaya, I. Y., Gatilov, Y. V., Malykhin, E. V. & Shteingarts, V. D. (2005). J. Fluor. Chem. 126, 1502–1509.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds