organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis[(oxan-2-yl)­­oxy]benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, B.S. Abdur Rahman University, Chennai, Tamil Nadu, India, bDepartment of Chemistry, Saveetha School of Engineering, Thandalam, Chennai 602 105, Tamil Nadu, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: easwar@bsauniv.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 March 2017; accepted 15 May 2017; online 23 May 2017)

The complete mol­ecule of the title compound, C16H22O4, is generated by crystallographic inversion symmetry. The oxane ring system adopts a chair conformation with the exocyclic C—C bond in an axial orientation; the dihedral angle between the oxane ring (all non-H atoms) and the benzene ring is 73.45 (1)°. A short intra­molecular C—H⋯O contact occcurs. In the crystal, a very weak C—H⋯π inter­action generates [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 4H-pyran nucleus occurs in mol­ecules possessing a wide spectrum of biological and pharmacological activities (Shehab & Ghoneim, 2016[Shehab, W. S. & Ghoneim, A. A. (2016). Arab. J. Chem. 9, S966-S970.]). As part of our studies in this area, we have undertaken the X-ray crystal structure analysis of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O contact is shown as a dashed line.

The title compound contains a half of the mol­ecule in an asymmetric unit; the complete mol­ecule is generated by crystallographic inversion symmetry with the inversion point at (1, 0, 1) for the asymmetric mol­ecule. The oxane ring (C1–C5/O1) adopts a chair conformation: the mean plane of the oxane ring makes a dihedral angle of 73.45 (1)° with the benzene ring. A short intra­molecular C—H⋯O contact occurs. In the crystal, a very weak C—H⋯π inter­action (Table 1[link]) generates [010] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.41 2.966 (2) 119
C5—H5ACg1i 0.93 2.94 3.621 (3) 129
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
The partial packing of the title compound viewed down the c axis showing the C—H⋯π inter­action as a dashed line. H atoms not involved in this inter­action have been excluded for clarity.

Synthesis and crystallization

A solution of p-quinone (2.0 mmol), 3,4-di­hydro-2H-pyran (5.0 mmol) and pTsOH (1.0 mmol) in 1,2-di­chloro­ethane (5 ml) was stirred at 83°C under an oxygen atmosphere. The progress of the reaction was monitored by TLC (20% ethyl acetate/hexa­ne). After completion, it was concentrated and the residue was subjected for separation of the respective products by column chromatography using silica gel (elutant: hexane and ethyl acetate): yield: 28%. Colourless blocks were recrystallized from aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H22O4
Mr 278.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.767 (5), 6.817 (5), 15.864 (5)
β (°) 99.391 (5)
V3) 722.0 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.756, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 5817, 1175, 976
Rint 0.024
(sin θ/λ)max−1) 0.580
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.09
No. of reflections 1175
No. of parameters 91
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

1,4-Bis[(oxan-2-yl)oxy]benzene top
Crystal data top
C16H22O4F(000) = 300
Mr = 278.33Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.767 (5) ÅCell parameters from 1175 reflections
b = 6.817 (5) Åθ = 2.6–24.4°
c = 15.864 (5) ŵ = 0.09 mm1
β = 99.391 (5)°T = 293 K
V = 722.0 (8) Å3Block, colourless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
976 reflections with I > 2σ(I)
ω and φ scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 24.4°, θmin = 2.6°
Tmin = 0.756, Tmax = 0.853h = 77
5817 measured reflectionsk = 77
1175 independent reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.1292P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1175 reflectionsΔρmax = 0.14 e Å3
91 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å, refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6512 (2)0.2718 (2)0.83666 (9)0.0426 (4)
H10.6833900.1660730.7993100.051*
C20.4358 (2)0.3315 (2)0.80928 (10)0.0526 (4)
H2A0.3489190.2220010.8169300.063*
H2B0.4139440.3657390.7491300.063*
C30.3834 (2)0.5052 (3)0.86102 (10)0.0582 (5)
H3A0.2494370.5509530.8385010.070*
H3B0.3861570.4661880.9200080.070*
C40.5329 (3)0.6680 (3)0.85653 (13)0.0660 (5)
H4A0.5170020.7187450.7986900.079*
H4B0.5079990.7742750.8940670.079*
C50.7431 (2)0.5937 (2)0.88259 (11)0.0565 (4)
H5A0.8370390.6978160.8760080.068*
H5B0.7629080.5563700.9423810.068*
C60.83603 (19)0.10172 (19)0.95814 (9)0.0377 (3)
C71.0155 (2)0.1063 (2)0.92723 (9)0.0431 (4)
H71.0266630.1775770.8782400.052*
C80.8222 (2)0.0044 (2)1.03046 (9)0.0425 (4)
H80.7013750.0075681.0512300.051*
O10.78259 (13)0.42824 (14)0.83219 (6)0.0445 (3)
O20.66348 (13)0.19763 (15)0.92132 (6)0.0456 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (8)0.0427 (8)0.0385 (8)0.0007 (7)0.0088 (6)0.0002 (6)
C20.0457 (8)0.0616 (11)0.0477 (9)0.0040 (8)0.0006 (7)0.0095 (8)
C30.0439 (9)0.0719 (12)0.0602 (10)0.0161 (8)0.0130 (7)0.0142 (9)
C40.0698 (11)0.0512 (10)0.0811 (13)0.0138 (9)0.0244 (9)0.0040 (9)
C50.0593 (10)0.0461 (10)0.0658 (11)0.0048 (8)0.0153 (8)0.0094 (8)
C60.0356 (7)0.0364 (8)0.0419 (8)0.0027 (6)0.0091 (6)0.0020 (6)
C70.0425 (8)0.0465 (9)0.0430 (8)0.0039 (7)0.0152 (6)0.0106 (7)
C80.0368 (7)0.0460 (8)0.0483 (8)0.0036 (6)0.0171 (6)0.0058 (7)
O10.0438 (5)0.0432 (6)0.0495 (6)0.0004 (5)0.0168 (4)0.0033 (5)
O20.0378 (5)0.0532 (7)0.0475 (6)0.0086 (5)0.0122 (4)0.0146 (5)
Geometric parameters (Å, º) top
C1—O11.3977 (18)C4—H4B0.9700
C1—O21.4247 (17)C5—O11.4324 (19)
C1—C21.507 (2)C5—H5A0.9700
C1—H10.9800C5—H5B0.9700
C2—C31.515 (2)C6—C81.372 (2)
C2—H2A0.9700C6—O21.3818 (17)
C2—H2B0.9700C6—C71.383 (2)
C3—C41.511 (3)C7—C8i1.378 (2)
C3—H3A0.9700C7—H70.9300
C3—H3B0.9700C8—C7i1.378 (2)
C4—C51.503 (2)C8—H80.9300
C4—H4A0.9700
O1—C1—O2112.26 (11)C5—C4—H4B109.5
O1—C1—C2111.88 (13)C3—C4—H4B109.5
O2—C1—C2105.81 (11)H4A—C4—H4B108.1
O1—C1—H1108.9O1—C5—C4111.49 (13)
O2—C1—H1108.9O1—C5—H5A109.3
C2—C1—H1108.9C4—C5—H5A109.3
C1—C2—C3110.83 (12)O1—C5—H5B109.3
C1—C2—H2A109.5C4—C5—H5B109.3
C3—C2—H2A109.5H5A—C5—H5B108.0
C1—C2—H2B109.5C8—C6—O2115.75 (12)
C3—C2—H2B109.5C8—C6—C7119.49 (12)
H2A—C2—H2B108.1O2—C6—C7124.76 (13)
C4—C3—C2109.30 (13)C8i—C7—C6119.50 (13)
C4—C3—H3A109.8C8i—C7—H7120.2
C2—C3—H3A109.8C6—C7—H7120.2
C4—C3—H3B109.8C6—C8—C7i121.01 (13)
C2—C3—H3B109.8C6—C8—H8119.5
H3A—C3—H3B108.3C7i—C8—H8119.5
C5—C4—C3110.50 (15)C1—O1—C5113.21 (11)
C5—C4—H4A109.5C6—O2—C1118.80 (10)
C3—C4—H4A109.5
O1—C1—C2—C355.28 (16)C7—C6—C8—C7i0.1 (2)
O2—C1—C2—C367.28 (16)O2—C1—O1—C561.30 (15)
C1—C2—C3—C453.15 (18)C2—C1—O1—C557.50 (16)
C2—C3—C4—C553.58 (19)C4—C5—O1—C157.90 (17)
C3—C4—C5—O155.58 (19)C8—C6—O2—C1165.57 (12)
C8—C6—C7—C8i0.1 (2)C7—C6—O2—C114.3 (2)
O2—C6—C7—C8i179.97 (13)O1—C1—O2—C668.23 (16)
O2—C6—C8—C7i179.98 (13)C2—C1—O2—C6169.46 (12)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.412.966 (2)119
C5—H5A···Cg1ii0.932.943.621 (3)129
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

RMR thanks the B. S. Abdur Rahman University for support. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShehab, W. S. & Ghoneim, A. A. (2016). Arab. J. Chem. 9, S966–S970.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds