organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Bromo-6-nitro-1H-indazol-1-yl)ethan-1-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, bFaculté des Sciences et Techniques, Université de Sciences, de Technologie, et de Medecine Nouakchott, Mauritania, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mmohamedabdelahi@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 27 April 2017; accepted 2 May 2017; online 5 May 2017)

The asymmetric unit of the title compound, C9H6BrN3O3, consists of two independent mol­ecules differing in the rotational orientations of the nitro and acetyl substituents. In the crystal, head-to-head π-stacking between pairs of adjacent mol­ecules forms dimers which are associated into stacks by C—Br⋯π(ring) inter­actions. C—H⋯O hydrogen bonds tie the stacks together.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among heterocyclic frameworks, indazole derivatives have been widely used in medicinal chemistry and drug discovery including anti-inflammatory, anti-tumor, or HIV protease inhibition (Boulouard et al., 2007[Boulouard, M., Schumann-Bard, P., Butt-Gueulle, S., Lohou, E., Stiebing, S., Collot, V. & Rault, S. (2007). Bioorg. Med. Chem. Lett. 17, 3177-3180.]), as well as exhibiting estrogen receptor binding (Steffan et al., 2004[Steffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., Chadwick, C. C., Chippari, S., Kenney, T., Eckert, A., Borges-Marcucci, L., Keith, J. C., Xu, Z., Mosyak, L. & Harnish, D. C. (2004). J. Med. Chem. 47, 6435-6438.]), anti­fungal and anti­bacterial activities (Tandon et al., 2005[Tandon, V. K., Yadav, D. B., Chaturvedi, A. K. & Shukla, P. K. (2005). Bioorg. Med. Chem. Lett. 15, 3288-3291.]). Following this line of research, we now report a new acetyl­ation of 6-nitro-1H-indazole using acetic anhydride in the presence of a catalytic amount of acetic acid.

The asymmetric unit (Fig. 1[link]) consists of two independent mol­ecules which differ in the rotational orientations of the nitro and acetyl groups. Thus the C6—C5—N3—O2 and C15—C14—N6—O5 torsion angles are, respectively, 7.1 (2) and 18.8 (2)° while the N2—N1—C8—C9 and N5—N4—C17—C18 torsion angles are, respectively, −0.8 (2) and −1.6 (2)°.

[Figure 1]
Figure 1
The asymmetric unit with the atom-labelling scheme and 50% probability ellipsoids. The inter­molecular C—H⋯O hydrogen bond is shown as a dashed line.

In the crystal, head-to-head π-stacking between pairs of adjacent mol­ecules [centroid–centroid distance for the five-membered rings = 3.6509 (9) Å and for the six-membered rings = 3.7419 (9) Å, with dihedral angles, respectively, of 1.00 (8) and 1.57 (7)°] forms dimers which are associated into stacks by C1—Br1⋯π(ring) inter­actions [ring = C10–C16/N4/N5 at [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z with Br1⋯centroid = 3.660 (7) Å] (Figs. 2[link] and 3[link]). The mean planes of the mol­ecules in the stacks are inclined at ±30.19 (1)° to (010). Tying the stacks together are C9—H9B⋯O1 and C13—H13⋯O1 hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]). Between the stacks are Br1⋯O5(x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]) and Br2⋯O2(x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]) contacts of 2.966 (1) and 3.039 (1) Å, respectively, which are significantly less than the sum of the van der Waals radii (3.37 Å) and so may be additional attractive inter­actions binding the stacks together.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.98 2.47 3.301 (2) 142
C13—H13⋯O1 0.95 2.49 3.380 (2) 157
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. C—H⋯O hydrogen bonds are depicted by black dashed lines, π-stacking inter­actions by purple dashed lines and C—Br⋯π(ring) inter­actions by orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction, with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A mixture of 3-bromo-6-nitro-1H-indazole (0.6 g, 3.68 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) were heated under reflux for 24 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol solution to afford the title compound as colorless crystals (yield 62%; m.p. 429–431 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H6BrN3O3
Mr 284.08
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.9863 (5), 7.8783 (3), 18.5549 (7)
β (°) 100.786 (1)
V3) 2008.41 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.09
Crystal size (mm) 0.28 × 0.24 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.52, 0.62
No. of measured, independent and observed [I > 2σ(I)] reflections 37783, 5389, 4592
Rint 0.032
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.09
No. of reflections 5389
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(3-Bromo-6-nitro-1H-indazol-1-yl)ethan-1-one top
Crystal data top
C9H6BrN3O3F(000) = 1120
Mr = 284.08Dx = 1.879 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.9863 (5) ÅCell parameters from 9129 reflections
b = 7.8783 (3) Åθ = 2.8–29.1°
c = 18.5549 (7) ŵ = 4.09 mm1
β = 100.786 (1)°T = 100 K
V = 2008.41 (13) Å3Thick plate, colourless
Z = 80.28 × 0.24 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5389 independent reflections
Radiation source: fine-focus sealed tube4592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.7°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.52, Tmax = 0.62l = 2525
37783 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0704P]
where P = (Fo2 + 2Fc2)/3
5389 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87667 (2)0.69535 (2)0.10776 (2)0.01973 (5)
O10.82655 (9)0.28983 (17)0.25598 (7)0.0303 (3)
O20.68943 (9)0.18565 (17)0.20109 (7)0.0295 (3)
O30.51681 (8)0.32535 (15)0.03442 (6)0.0206 (2)
N10.65058 (9)0.45981 (16)0.05561 (7)0.0151 (3)
N20.69880 (9)0.54546 (16)0.10335 (8)0.0166 (3)
N30.76125 (10)0.27475 (18)0.20217 (7)0.0195 (3)
C10.78515 (11)0.57816 (19)0.06524 (9)0.0162 (3)
C20.79925 (11)0.51742 (19)0.00842 (9)0.0154 (3)
C30.87569 (11)0.5216 (2)0.06909 (10)0.0189 (3)
H30.93560.57540.06630.023*
C40.86134 (11)0.4455 (2)0.13281 (9)0.0190 (3)
H40.91140.44620.17520.023*
C50.77190 (11)0.3665 (2)0.13456 (9)0.0164 (3)
C60.69405 (11)0.36030 (19)0.07664 (9)0.0153 (3)
H60.63440.30580.08000.018*
C70.70969 (10)0.44003 (18)0.01304 (9)0.0140 (3)
C80.55482 (11)0.4010 (2)0.07805 (9)0.0165 (3)
C90.50905 (12)0.4392 (2)0.15563 (9)0.0213 (4)
H9A0.51110.56190.16410.032*
H9B0.44120.40080.16490.032*
H9C0.54480.38020.18880.032*
Br20.98495 (2)0.44610 (2)0.64437 (2)0.02026 (5)
O40.59044 (10)0.35663 (17)0.30282 (7)0.0320 (3)
O50.51604 (8)0.56878 (15)0.34207 (7)0.0240 (3)
O60.56802 (8)0.74041 (15)0.59182 (6)0.0216 (2)
N40.71797 (9)0.62900 (16)0.60559 (7)0.0149 (3)
N50.80800 (9)0.59760 (17)0.64970 (7)0.0168 (3)
N60.58318 (10)0.46593 (17)0.34829 (8)0.0197 (3)
C100.85715 (11)0.5139 (2)0.60782 (9)0.0167 (3)
C110.80361 (11)0.48477 (19)0.53549 (9)0.0153 (3)
C120.82254 (11)0.4017 (2)0.47287 (9)0.0182 (3)
H120.88410.35130.47240.022*
C130.74902 (12)0.3953 (2)0.41204 (9)0.0190 (3)
H130.75860.33830.36880.023*
C140.65985 (11)0.47404 (19)0.41478 (9)0.0162 (3)
C150.63782 (11)0.55937 (18)0.47456 (9)0.0149 (3)
H150.57660.61220.47410.018*
C160.71298 (11)0.56155 (18)0.53582 (9)0.0140 (3)
C170.64391 (12)0.71328 (19)0.63304 (9)0.0171 (3)
C180.66666 (13)0.7624 (2)0.71242 (9)0.0247 (4)
H18A0.67800.65990.74270.037*
H18B0.61170.82570.72500.037*
H18C0.72510.83370.72150.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01677 (8)0.01729 (9)0.02671 (10)0.00333 (5)0.00815 (6)0.00148 (6)
O10.0241 (6)0.0447 (8)0.0188 (6)0.0035 (6)0.0042 (5)0.0037 (6)
O20.0290 (7)0.0402 (8)0.0199 (7)0.0076 (6)0.0063 (5)0.0019 (6)
O30.0156 (5)0.0243 (6)0.0216 (6)0.0061 (4)0.0030 (5)0.0001 (5)
N10.0130 (6)0.0174 (6)0.0147 (7)0.0027 (5)0.0017 (5)0.0004 (5)
N20.0159 (6)0.0160 (6)0.0187 (7)0.0019 (5)0.0050 (5)0.0005 (5)
N30.0209 (7)0.0229 (7)0.0148 (7)0.0062 (5)0.0035 (5)0.0029 (5)
C10.0145 (7)0.0135 (7)0.0214 (8)0.0008 (5)0.0055 (6)0.0009 (6)
C20.0140 (7)0.0115 (7)0.0211 (8)0.0012 (5)0.0043 (6)0.0025 (6)
C30.0125 (7)0.0163 (8)0.0271 (9)0.0020 (6)0.0018 (6)0.0044 (7)
C40.0159 (7)0.0194 (8)0.0194 (8)0.0006 (6)0.0027 (6)0.0050 (6)
C50.0172 (7)0.0177 (7)0.0146 (8)0.0026 (6)0.0035 (6)0.0019 (6)
C60.0136 (7)0.0156 (7)0.0169 (8)0.0009 (5)0.0033 (6)0.0043 (6)
C70.0113 (7)0.0141 (7)0.0162 (8)0.0001 (5)0.0013 (5)0.0041 (6)
C80.0131 (7)0.0152 (7)0.0201 (8)0.0013 (5)0.0002 (6)0.0034 (6)
C90.0185 (8)0.0225 (9)0.0200 (9)0.0034 (6)0.0037 (6)0.0014 (7)
Br20.01229 (8)0.02216 (9)0.02581 (10)0.00376 (5)0.00225 (6)0.00464 (6)
O40.0401 (8)0.0345 (7)0.0196 (7)0.0146 (6)0.0012 (6)0.0089 (6)
O50.0254 (6)0.0250 (6)0.0200 (6)0.0103 (5)0.0005 (5)0.0011 (5)
O60.0177 (6)0.0283 (6)0.0192 (6)0.0081 (5)0.0046 (5)0.0004 (5)
N40.0130 (6)0.0168 (6)0.0147 (7)0.0031 (5)0.0023 (5)0.0005 (5)
N50.0126 (6)0.0184 (6)0.0186 (7)0.0020 (5)0.0007 (5)0.0030 (5)
N60.0240 (7)0.0208 (7)0.0155 (7)0.0039 (5)0.0063 (5)0.0015 (5)
C100.0131 (7)0.0144 (7)0.0227 (8)0.0015 (5)0.0036 (6)0.0042 (6)
C110.0133 (7)0.0135 (7)0.0205 (8)0.0014 (5)0.0071 (6)0.0042 (6)
C120.0167 (7)0.0159 (7)0.0240 (9)0.0048 (6)0.0085 (6)0.0040 (6)
C130.0232 (8)0.0165 (7)0.0197 (8)0.0039 (6)0.0106 (6)0.0019 (6)
C140.0190 (8)0.0154 (7)0.0149 (8)0.0016 (6)0.0047 (6)0.0024 (6)
C150.0138 (7)0.0140 (7)0.0178 (8)0.0026 (5)0.0051 (6)0.0033 (6)
C160.0151 (7)0.0124 (7)0.0160 (8)0.0010 (5)0.0067 (6)0.0020 (6)
C170.0182 (7)0.0159 (7)0.0189 (8)0.0032 (6)0.0075 (6)0.0031 (6)
C180.0249 (9)0.0326 (9)0.0168 (8)0.0076 (7)0.0041 (7)0.0025 (7)
Geometric parameters (Å, º) top
Br1—C11.8686 (15)Br2—C101.8673 (15)
O1—N31.2264 (18)O4—N61.2230 (18)
O2—N31.2226 (19)O5—N61.2293 (17)
O3—C81.2060 (19)O6—C171.205 (2)
N1—N21.3850 (18)N4—C161.389 (2)
N1—C71.3914 (19)N4—N51.3896 (17)
N1—C81.4047 (19)N4—C171.4039 (19)
N2—C11.306 (2)N5—C101.308 (2)
N3—C51.479 (2)N6—C141.477 (2)
C1—C21.427 (2)C10—C111.428 (2)
C2—C31.400 (2)C11—C121.401 (2)
C2—C71.410 (2)C11—C161.405 (2)
C3—C41.374 (2)C12—C131.378 (2)
C3—H30.9500C12—H120.9500
C4—C51.403 (2)C13—C141.402 (2)
C4—H40.9500C13—H130.9500
C5—C61.380 (2)C14—C151.380 (2)
C6—C71.390 (2)C15—C161.396 (2)
C6—H60.9500C15—H150.9500
C8—C91.492 (2)C17—C181.498 (2)
C9—H9A0.9800C18—H18A0.9800
C9—H9B0.9800C18—H18B0.9800
C9—H9C0.9800C18—H18C0.9800
N2—N1—C7111.28 (12)C16—N4—N5111.27 (12)
N2—N1—C8121.50 (13)C16—N4—C17127.40 (13)
C7—N1—C8127.21 (13)N5—N4—C17121.28 (13)
C1—N2—N1105.16 (13)C10—N5—N4105.00 (13)
O2—N3—O1123.59 (15)O4—N6—O5124.05 (14)
O2—N3—C5118.66 (13)O4—N6—C14117.76 (13)
O1—N3—C5117.73 (14)O5—N6—C14118.19 (13)
N2—C1—C2113.62 (14)N5—C10—C11113.45 (13)
N2—C1—Br1120.40 (12)N5—C10—Br2120.15 (12)
C2—C1—Br1125.98 (11)C11—C10—Br2126.40 (12)
C3—C2—C7120.97 (15)C12—C11—C16121.00 (15)
C3—C2—C1135.25 (15)C12—C11—C10135.01 (14)
C7—C2—C1103.78 (13)C16—C11—C10103.98 (14)
C4—C3—C2117.98 (15)C13—C12—C11117.92 (14)
C4—C3—H3121.0C13—C12—H12121.0
C2—C3—H3121.0C11—C12—H12121.0
C3—C4—C5119.21 (15)C12—C13—C14119.11 (15)
C3—C4—H4120.4C12—C13—H13120.4
C5—C4—H4120.4C14—C13—H13120.4
C6—C5—C4125.08 (15)C15—C14—C13125.34 (15)
C6—C5—N3116.94 (14)C15—C14—N6117.13 (13)
C4—C5—N3117.91 (14)C13—C14—N6117.53 (14)
C5—C6—C7114.74 (14)C14—C15—C16114.38 (14)
C5—C6—H6122.6C14—C15—H15122.8
C7—C6—H6122.6C16—C15—H15122.8
C6—C7—N1131.83 (13)N4—C16—C15131.46 (14)
C6—C7—C2121.99 (14)N4—C16—C11106.29 (13)
N1—C7—C2106.16 (13)C15—C16—C11122.23 (14)
O3—C8—N1118.65 (14)O6—C17—N4118.39 (15)
O3—C8—C9125.73 (14)O6—C17—C18125.29 (15)
N1—C8—C9115.62 (14)N4—C17—C18116.33 (14)
C8—C9—H9A109.5C17—C18—H18A109.5
C8—C9—H9B109.5C17—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C8—C9—H9C109.5C17—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—N2—C10.18 (16)C16—N4—N5—C100.38 (17)
C8—N1—N2—C1178.96 (13)C17—N4—N5—C10178.10 (14)
N1—N2—C1—C20.07 (17)N4—N5—C10—C110.39 (18)
N1—N2—C1—Br1179.62 (10)N4—N5—C10—Br2179.26 (10)
N2—C1—C2—C3179.36 (17)N5—C10—C11—C12178.64 (17)
Br1—C1—C2—C30.3 (3)Br2—C10—C11—C121.7 (3)
N2—C1—C2—C70.06 (18)N5—C10—C11—C160.26 (18)
Br1—C1—C2—C7179.73 (11)Br2—C10—C11—C16179.37 (11)
C7—C2—C3—C41.1 (2)C16—C11—C12—C131.0 (2)
C1—C2—C3—C4179.55 (17)C10—C11—C12—C13177.75 (17)
C2—C3—C4—C50.3 (2)C11—C12—C13—C141.2 (2)
C3—C4—C5—C61.0 (2)C12—C13—C14—C150.3 (3)
C3—C4—C5—N3175.56 (14)C12—C13—C14—N6179.42 (14)
O2—N3—C5—C67.1 (2)O4—N6—C14—C15161.03 (15)
O1—N3—C5—C6174.45 (14)O5—N6—C14—C1518.8 (2)
O2—N3—C5—C4169.81 (14)O4—N6—C14—C1319.2 (2)
O1—N3—C5—C48.7 (2)O5—N6—C14—C13160.94 (15)
C4—C5—C6—C70.2 (2)C13—C14—C15—C160.7 (2)
N3—C5—C6—C7176.44 (13)N6—C14—C15—C16179.57 (13)
C5—C6—C7—N1179.54 (15)N5—N4—C16—C15178.78 (15)
C5—C6—C7—C21.3 (2)C17—N4—C16—C151.2 (3)
N2—N1—C7—C6178.20 (15)N5—N4—C16—C110.23 (16)
C8—N1—C7—C60.5 (3)C17—N4—C16—C11177.78 (14)
N2—N1—C7—C20.22 (16)C14—C15—C16—N4178.02 (15)
C8—N1—C7—C2178.91 (14)C14—C15—C16—C110.8 (2)
C3—C2—C7—C62.0 (2)C12—C11—C16—N4179.09 (14)
C1—C2—C7—C6178.45 (14)C10—C11—C16—N40.01 (16)
C3—C2—C7—N1179.36 (13)C12—C11—C16—C150.0 (2)
C1—C2—C7—N10.17 (16)C10—C11—C16—C15179.13 (14)
N2—N1—C8—O3179.09 (14)C16—N4—C17—O64.3 (2)
C7—N1—C8—O30.5 (2)N5—N4—C17—O6178.37 (14)
N2—N1—C8—C90.8 (2)C16—N4—C17—C18175.71 (15)
C7—N1—C8—C9179.40 (14)N5—N4—C17—C181.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.982.473.301 (2)142
C13—H13···O10.952.493.380 (2)157
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBoulouard, M., Schumann-Bard, P., Butt-Gueulle, S., Lohou, E., Stiebing, S., Collot, V. & Rault, S. (2007). Bioorg. Med. Chem. Lett. 17, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., Chadwick, C. C., Chippari, S., Kenney, T., Eckert, A., Borges-Marcucci, L., Keith, J. C., Xu, Z., Mosyak, L. & Harnish, D. C. (2004). J. Med. Chem. 47, 6435–6438.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTandon, V. K., Yadav, D. B., Chaturvedi, A. K. & Shukla, P. K. (2005). Bioorg. Med. Chem. Lett. 15, 3288–3291.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds