organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(5-Fluoro-1-methyl-2-oxoindolin-3-yl­­idene)-N-[4-(methyl­sulfan­yl)phen­yl]hydrazine-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Yüzüncü Yıl University, 65080 Tuşba, Van, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ístanbul University, 34116 Beyazıt–Ístanbul, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: zeliha.atioglu@kapadokya.edu.tr

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 18 April 2017; accepted 4 May 2017; online 9 May 2017)

The title mol­ecule, C17H15FN4OS2, obtained from 5-fluoro-1-methyl-1H-indol-2,3-dione, and 3-[4-(methyl­sulfan­yl)phen­yl]thio­semicarbazide, has an essentially planar conformation (r.m.s deviation for all non-H atoms = 0.116 Å). Intra­molecular N—H⋯N and N—H⋯O hydrogen bonds generate S(5) and S(6) ring motifs, respectively. In the crystal, C—H⋯S hydrogen bonds occur between layers of mol­ecules parallel to the (10-1) plane. Face-to-face ππ stacking inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The indole ring system is an important structural component in many pharmaceutical agents, including compounds with anti­viral, anti-inflammatory and anti­tumor properties (Ma et al., 2015[Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173-186.]). 1H-Indole-2,3-dione (isatin) has a wide spectrum of biological properties, such as cytotoxic and anti­neoplastic effects. Isatin derivatives with halogens and N-alkyl­haloisatins have been reported to exhibit anti­cancer activity (Podichetty et al., 2009[Podichetty, A. K., Faust, A., Kopka, K., Wagner, S., Schober, O., Schäfers, M. & Haufe, G. (2009). Bioorg. Med. Chem. 17, 2680-2688.]). The biological activities of thio­semicarbazones, such as anti­cancer, anti­viral, anti­microbial etc, have been known for a long time. Isatin 3-thio­semicarbazone derivatives, which have anti-HIV effects, are used as prophylaxes against smallpox and vaccinia viruses (Bal et al., 2005[Bal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451-4455.]; Hall et al., 2009[Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakács, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191-3204.]). Isatin 3-[N4-(phenyl substituted) thio­semicarbazone] derivatives have been shown to be have significantly more multidrug resistant-selective activity than N4-alkyl and N4-cyclo­alkyl thio­semicarbazone derivatives (Hall et al., 2009[Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakács, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191-3204.], 2011[Hall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., Fales, H. M. & Gottesman, M. M. (2011). J. Med. Chem. 54, 5878-5889.]).

In the title compound (Fig. 1[link]), the N—N—C=S and N—N—C(=S)—N torsion angles are 170.0 (3) and −9.6 (6)°, respectively. Intra­molecular N—H⋯N and N—H⋯O hydrogen bonds (Table 1[link]) generate S(5) and S(6) ring motifs, respectively (Fig. 2[link]). All bond lengths and angles are within normal ranges and agree with those reported for (3E)-3-[(4-butyl­phen­yl)imino]-1,3-di­hydro-2H-indol-2-one (Akkurt et al., 2003[Akkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780-o782.]), N′-[(2Z)-3-allyl-4-oxo-1,3-thia­zolidin-2-yl­idene]-5-fluoro-3-phenyl-1H-indole-2-carbohydrazide (Akkurt et al., 2009[Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009-o1010.]), 2-(4-iso­butyl­phen­yl)-N′-[(3Z)-2-oxoindolin-3-yl­idene]propano­hydrazide (Mohamed et al., 2012[Mohamed, S. K., Akkurt, M., Albayati, M. R., Singh, K. & Potgieter, H. (2012). Acta Cryst. E68, o1222-o1223.]), 5-fluoro-1H-indole-2,3-dione 3-thio­semicarbazone derivatives (Özbey et al., 2006[Özbey, S., Kaynak, F. B., Eriksson, L., Karali, N. & Gürsoy, A. (2006). Acta Cryst. A62, s174.]; Karayel et al., 2015[Karayel, A., Kaynak, F. B., Karalı, N. & Özbey, S. (2015). Acta Cryst. A71, s468.]) and 5-tri­fluoro­meth­oxy-1H-indole-2,3-dione 3-thio­semicarbazone derivatives (Kaynak et al., 2013[Kaynak, F. B., Özbey, S. & Karalı, N. (2013). J. Mol. Struct. 1049, 157-164.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.87 (4) 2.09 (5) 2.757 (5) 133 (5)
N4—H4N⋯N2 0.90 (5) 2.14 (5) 2.598 (5) 110 (3)
C3—H3⋯S1i 0.93 2.84 3.712 (5) 158
C9—H9B⋯S2ii 0.96 2.84 3.652 (7) 142
C12—H12⋯S1 0.93 2.61 3.256 (4) 128
Symmetry codes: (i) x-1, y, z-1; (ii) [x-1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A partial view along the c axis of the N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonding (Table 1[link]) in the crystal packing of the title compound.

In the crystal, C—H⋯S hydrogen bonds (Table 1[link]) occur between layers of mol­ecules located parallel to the (10[\overline{1}]) plane (Fig. 3[link]). Face-to-face ππ stacking inter­actions [Cg1⋯Cg3(x, 1 − y, −[{1\over 2}] + z) = 3.615 (3) Å and Cg2⋯Cg3(−1 + x, 1 − y, −[{1\over 2}] + z) = 3.835 (3) Å, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C11–C16 rings, respectively] are also observed.

[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound.

Synthesis and crystallization

Steps in the synthesis of the title compound (5) are shown in Fig. 4[link].

[Figure 4]
Figure 4
The synthesis of the title compound 5.

3-[4-(Methyl­sulfan­yl)phen­yl]thio­semicarbazide (2)

To a solution of hydrazine hydrate (5 mmol) in ethanol (10 ml), a suspension of 4-(methyl­sulfan­yl)phenyl­iso­thio­cyanate (1) (5 mmol) in ethanol (10 ml) was added dropwise with vigorous stirring and cooling in an ice bath. The mixture was allowed to stand overnight. The crystals formed were recrystallized from ethanol solution.

5-Fluoro-1-methyl-1H-indole-2,3-dione (4)

A suspension of 5-fluoro-1H-indole-2,3-dione (3) (5 mmol), K2CO3 (7 mmol) and KI (1 mmol) in anhydrous DMF (5 ml) was stirred for 30 min at room temperature. After addition of iodo­methane (15 mmol), the mixture was refluxed for 4 h. The product was poured onto ice–water then filtered.

5-Fluoro-1-methyl-1H-indole-2,3-dione 3-[4-(methyl­sulfan­yl)phen­yl] thio­semicarbazone (5)

A solution of N-[(4-methyl­sulfan­yl)phen­yl]thio­semi­carb­azide (2) (2.5 mmol) in ethanol (10 ml) was added to a solution of 5-fluoro-1-methyl-1H-indole-2,3-dione (4) (2.5 mmol) in ethanol (20 ml). The mixture was refluxed on a water bath for 10 h. The product formed after cooling was filtered and washed with ethanol or recrystallized from ethanol. Orange crystals were obtained in 94% yield, m.p. 508–511 K.

IR (KBr): ν 3269, 3226 (NH), 1681 (C=O), 1274 (C=S); 1H NMR (DMSO-d6; 400 MHz): δ 2.49 (s, 3H, SCH3), 3.21 (s, 3H, ind. N—CH3), 7.15 (dd, J = 8.60, 4.00 Hz, 1H, ind. C7—H), 7.26–7.32 (m, 1H, ind. C6—H), 7.30 (d, J = 8.60 Hz, 2H, fen. C3,5-H), 7.55 (d, J = 8.60 Hz, 2H, fen. C2,6-H), 7.64 (dd, J = 8.00, 2.66 Hz, 1H, ind. C4—H), 10.81 (s, 1H, N4—H), 12.56 (s, 1H, N2—H). Analysis calculated for C17H15FN4OS2 (374.45): C, 54.53; H, 4.04; N, 14.96. Found: C, 54.24; H, 4.09; N, 14.99. 3.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H15FN4OS2
Mr 374.45
Crystal system, space group Monoclinic, Cc
Temperature (K) 296
a, b, c (Å) 7.9661 (6), 20.8680 (17), 10.4774 (9)
β (°) 95.257 (3)
V3) 1734.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.19 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.663, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18078, 3245, 2910
Rint 0.036
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.096, 1.10
No. of reflections 3245
No. of parameters 236
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.23
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.09 (12)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155. ]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2-(5-Fluoro-1-methyl-2-oxoindolin-3-ylidene)-N-[4-(methylsulfanyl)phenyl]hydrazine-1-carbothioamide top
Crystal data top
C17H15FN4OS2F(000) = 776
Mr = 374.45Dx = 1.434 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9917 reflections
a = 7.9661 (6) Åθ = 3.2–26.4°
b = 20.8680 (17) ŵ = 0.33 mm1
c = 10.4774 (9) ÅT = 296 K
β = 95.257 (3)°Block, orange
V = 1734.4 (2) Å30.19 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2910 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.4°, θmin = 3.2°
Tmin = 0.663, Tmax = 0.745h = 98
18078 measured reflectionsk = 2626
3245 independent reflectionsl = 1313
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0199P)2 + 2.3048P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.044(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 0.18 e Å3
S = 1.10Δρmin = 0.23 e Å3
3245 reflectionsExtinction correction: SHELXL-2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
236 parametersExtinction coefficient: 0.016 (2)
2 restraintsAbsolute structure: Flack (1983)
Hydrogen site location: mixedAbsolute structure parameter: 0.09 (12)
Special details top

Experimental. The melting point was estimated with a Buchi 540 melting-point apparatus in an open capillary and is uncorrected. Elemental analysis was performed on a Thermo Finnigan Flash EA 1112 elemental analyzer. IR spectra was recorded on a KBr disc using a Perkin– Elmer Model 1600 FT–IR spectrometer. The 1H NMR spectra were obtained on Bruker Avance DPX 400 spectrophotometer using DMSO-d6. All chemicals and solvents were purchased from Merck–Schuchardt and Aldrich.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å and 0.96 Å) and N-bound H atoms were found from a difference Fourier map. All H atoms were refined using the riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C,N). The coordinates of the H atoms bonded to N were refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.7480 (2)0.42568 (6)0.83501 (13)0.0655 (5)
S20.8897 (2)0.76426 (7)0.92299 (15)0.0745 (6)
F10.1155 (5)0.53841 (19)0.0901 (3)0.0908 (16)
O10.4820 (5)0.30064 (15)0.5192 (3)0.0583 (13)
N10.3211 (5)0.31394 (17)0.3247 (3)0.0492 (14)
N20.4943 (5)0.44513 (16)0.5056 (3)0.0428 (11)
N30.5831 (5)0.41981 (18)0.6103 (3)0.0459 (11)
N40.6774 (5)0.52015 (16)0.6595 (3)0.0428 (10)
C10.2595 (6)0.3667 (2)0.2503 (4)0.0452 (16)
C20.1575 (6)0.3670 (3)0.1361 (4)0.0603 (18)
C30.1126 (6)0.4254 (3)0.0825 (4)0.0639 (18)
C40.1651 (6)0.4813 (3)0.1437 (4)0.0591 (19)
C50.2671 (6)0.4819 (2)0.2571 (4)0.0503 (17)
C60.3147 (5)0.4240 (2)0.3100 (4)0.0426 (12)
C70.4150 (5)0.40606 (19)0.4266 (4)0.0407 (11)
C80.4131 (6)0.33431 (19)0.4325 (4)0.0450 (14)
C90.2977 (8)0.2468 (2)0.2914 (6)0.072 (2)
C100.6701 (6)0.45967 (19)0.6982 (4)0.0432 (14)
C110.7340 (5)0.57666 (19)0.7249 (3)0.0379 (11)
C120.8323 (6)0.5784 (2)0.8413 (4)0.0467 (14)
C130.8783 (6)0.6365 (2)0.8973 (4)0.0502 (16)
C140.8271 (6)0.6943 (2)0.8390 (4)0.0497 (16)
C150.7321 (6)0.6925 (2)0.7212 (4)0.0498 (14)
C160.6853 (6)0.63372 (19)0.6650 (4)0.0448 (14)
C170.8004 (10)0.8275 (3)0.8227 (7)0.090 (3)
H20.120600.329000.096800.0720*
H30.046500.427200.004700.0760*
H3N0.578 (7)0.379 (2)0.626 (5)0.0550*
H4N0.621 (6)0.529 (2)0.583 (5)0.0520*
H50.302300.520300.296200.0600*
H9A0.343700.238400.211500.1080*
H9B0.179500.236800.283300.1080*
H9C0.354300.220700.357400.1080*
H120.867200.540400.881700.0560*
H130.944500.637100.975100.0600*
H150.699500.730500.679700.0600*
H160.620700.632900.586500.0540*
H17A0.840500.824200.739300.1350*
H17B0.833300.868200.860000.1350*
H17C0.679800.824100.815200.1350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0947 (11)0.0465 (6)0.0489 (6)0.0041 (7)0.0286 (6)0.0070 (6)
S20.0981 (12)0.0552 (8)0.0695 (9)0.0178 (8)0.0044 (8)0.0215 (7)
F10.086 (3)0.104 (3)0.078 (2)0.023 (2)0.0169 (19)0.031 (2)
O10.076 (3)0.0428 (17)0.055 (2)0.0027 (16)0.0003 (17)0.0041 (14)
N10.052 (3)0.047 (2)0.048 (2)0.0094 (17)0.0018 (18)0.0098 (16)
N20.047 (2)0.0440 (19)0.0349 (17)0.0005 (16)0.0093 (15)0.0005 (14)
N30.058 (2)0.0360 (18)0.0401 (19)0.0043 (16)0.0151 (16)0.0027 (15)
N40.055 (2)0.0383 (18)0.0321 (16)0.0053 (16)0.0123 (15)0.0016 (13)
C10.040 (3)0.058 (3)0.038 (2)0.0052 (19)0.0055 (19)0.0100 (18)
C20.043 (3)0.094 (4)0.042 (2)0.006 (3)0.006 (2)0.021 (3)
C30.044 (3)0.104 (4)0.041 (2)0.002 (3)0.011 (2)0.008 (3)
C40.046 (3)0.083 (4)0.047 (3)0.012 (2)0.003 (2)0.018 (2)
C50.047 (3)0.054 (3)0.048 (3)0.003 (2)0.006 (2)0.0053 (19)
C60.037 (2)0.054 (2)0.035 (2)0.0059 (19)0.0065 (17)0.0047 (17)
C70.043 (2)0.042 (2)0.0356 (19)0.0073 (18)0.0044 (17)0.0022 (17)
C80.050 (3)0.040 (2)0.045 (2)0.0059 (19)0.0037 (19)0.0038 (19)
C90.082 (4)0.052 (3)0.083 (4)0.014 (3)0.009 (3)0.028 (3)
C100.051 (3)0.038 (2)0.039 (2)0.0008 (19)0.0039 (18)0.0011 (17)
C110.038 (2)0.043 (2)0.0323 (19)0.0045 (17)0.0010 (16)0.0023 (16)
C120.051 (3)0.043 (2)0.044 (2)0.0045 (19)0.007 (2)0.0008 (18)
C130.057 (3)0.056 (3)0.036 (2)0.010 (2)0.005 (2)0.0051 (19)
C140.055 (3)0.050 (3)0.045 (2)0.011 (2)0.010 (2)0.0097 (19)
C150.059 (3)0.041 (2)0.049 (2)0.0017 (19)0.003 (2)0.0015 (18)
C160.055 (3)0.039 (2)0.039 (2)0.0029 (19)0.0030 (19)0.0009 (16)
C170.137 (7)0.044 (3)0.092 (4)0.012 (3)0.022 (4)0.013 (3)
Geometric parameters (Å, º) top
S1—C101.667 (4)C6—C71.446 (6)
S2—C141.753 (4)C7—C81.499 (6)
S2—C171.793 (7)C11—C161.385 (6)
F1—C41.361 (7)C11—C121.388 (5)
O1—C81.236 (5)C12—C131.382 (6)
N1—C11.411 (5)C13—C141.396 (6)
N1—C81.357 (5)C14—C151.388 (6)
N1—C91.452 (6)C15—C161.397 (6)
N2—N31.357 (5)C2—H20.9300
N2—C71.286 (5)C3—H30.9300
N3—C101.380 (6)C5—H50.9300
N4—C101.329 (5)C9—H9A0.9600
N4—C111.417 (5)C9—H9B0.9600
C1—C21.383 (6)C9—H9C0.9600
C1—C61.401 (6)C12—H120.9300
C2—C31.375 (8)C13—H130.9300
C3—C41.378 (8)C15—H150.9300
N3—H3N0.87 (4)C16—H160.9300
N4—H4N0.90 (5)C17—H17A0.9600
C4—C51.377 (6)C17—H17B0.9600
C5—C61.368 (6)C17—H17C0.9600
C14—S2—C17103.9 (3)N4—C11—C12125.2 (4)
C1—N1—C8110.5 (3)C11—C12—C13120.2 (4)
C1—N1—C9126.2 (4)C12—C13—C14121.1 (4)
C8—N1—C9123.4 (4)S2—C14—C13116.2 (3)
N3—N2—C7117.6 (3)C13—C14—C15118.7 (4)
N2—N3—C10119.9 (4)S2—C14—C15125.2 (3)
C10—N4—C11131.6 (3)C14—C15—C16120.1 (4)
N1—C1—C2128.9 (4)C11—C16—C15120.8 (4)
N1—C1—C6109.9 (4)C1—C2—H2121.00
C2—C1—C6121.2 (4)C3—C2—H2121.00
C1—C2—C3117.9 (5)C2—C3—H3120.00
C2—C3—C4120.3 (4)C4—C3—H3120.00
N2—N3—H3N120 (3)C4—C5—H5121.00
C10—N3—H3N120 (4)C6—C5—H5121.00
F1—C4—C3119.0 (4)N1—C9—H9A110.00
C10—N4—H4N116 (3)N1—C9—H9B110.00
F1—C4—C5118.3 (5)N1—C9—H9C109.00
C3—C4—C5122.7 (5)H9A—C9—H9B109.00
C11—N4—H4N112 (3)H9A—C9—H9C109.00
C4—C5—C6117.5 (4)H9B—C9—H9C109.00
C1—C6—C5120.6 (4)C11—C12—H12120.00
C1—C6—C7106.4 (4)C13—C12—H12120.00
C5—C6—C7133.0 (4)C12—C13—H13119.00
N2—C7—C8127.8 (4)C14—C13—H13119.00
C6—C7—C8106.7 (3)C14—C15—H15120.00
N2—C7—C6125.5 (4)C16—C15—H15120.00
O1—C8—N1127.1 (4)C11—C16—H16120.00
O1—C8—C7126.3 (4)C15—C16—H16120.00
N1—C8—C7106.6 (3)S2—C17—H17A109.00
N3—C10—N4113.7 (4)S2—C17—H17B109.00
S1—C10—N3116.2 (3)S2—C17—H17C110.00
S1—C10—N4130.0 (3)H17A—C17—H17B109.00
N4—C11—C16115.7 (3)H17A—C17—H17C110.00
C12—C11—C16119.2 (4)H17B—C17—H17C109.00
C17—S2—C14—C150.8 (5)C1—C2—C3—C41.7 (7)
C17—S2—C14—C13179.1 (4)C2—C3—C4—F1178.4 (4)
C9—N1—C1—C24.2 (8)C2—C3—C4—C52.0 (7)
C8—N1—C1—C60.9 (5)C3—C4—C5—C60.9 (7)
C8—N1—C1—C2178.1 (5)F1—C4—C5—C6179.6 (4)
C9—N1—C8—C7176.4 (4)C4—C5—C6—C10.5 (7)
C1—N1—C8—O1178.5 (5)C4—C5—C6—C7178.3 (4)
C9—N1—C1—C6176.8 (5)C1—C6—C7—C80.8 (5)
C1—N1—C8—C71.4 (5)C1—C6—C7—N2176.8 (4)
C9—N1—C8—O13.7 (8)C5—C6—C7—C8177.2 (5)
N3—N2—C7—C6179.8 (4)C5—C6—C7—N25.1 (8)
C7—N2—N3—C10179.8 (4)C6—C7—C8—O1178.5 (5)
N3—N2—C7—C82.6 (7)C6—C7—C8—N11.3 (5)
N2—N3—C10—N49.6 (6)N2—C7—C8—O13.9 (8)
N2—N3—C10—S1170.0 (3)N2—C7—C8—N1176.2 (4)
C10—N4—C11—C1215.7 (7)N4—C11—C16—C15179.3 (4)
C11—N4—C10—S18.7 (8)C12—C11—C16—C150.9 (7)
C11—N4—C10—N3170.8 (4)N4—C11—C12—C13179.1 (4)
C10—N4—C11—C16164.5 (5)C16—C11—C12—C131.1 (7)
N1—C1—C2—C3179.2 (4)C11—C12—C13—C140.2 (7)
C2—C1—C6—C7179.1 (4)C12—C13—C14—C151.7 (7)
N1—C1—C6—C70.0 (5)C12—C13—C14—S2178.3 (4)
C6—C1—C2—C30.4 (7)S2—C14—C15—C16178.1 (4)
C2—C1—C6—C50.8 (7)C13—C14—C15—C161.9 (7)
N1—C1—C6—C5178.3 (4)C14—C15—C16—C110.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.87 (4)2.09 (5)2.757 (5)133 (5)
N4—H4N···N20.90 (5)2.14 (5)2.598 (5)110 (3)
C3—H3···S1i0.932.843.712 (5)158
C9—H9B···S2ii0.962.843.652 (7)142
C9—H9C···O10.962.522.911 (7)104
C12—H12···S10.932.613.256 (4)128
Symmetry codes: (i) x1, y, z1; (ii) x1, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

Funding information

Funding for this research was provided by: TÜBİTAK (award No. 1003–215S011).

References

First citationAkkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., Fales, H. M. & Gottesman, M. M. (2011). J. Med. Chem. 54, 5878–5889.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakács, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191–3204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarayel, A., Kaynak, F. B., Karalı, N. & Özbey, S. (2015). Acta Cryst. A71, s468.  CrossRef IUCr Journals Google Scholar
First citationKaynak, F. B., Özbey, S. & Karalı, N. (2013). J. Mol. Struct. 1049, 157–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohamed, S. K., Akkurt, M., Albayati, M. R., Singh, K. & Potgieter, H. (2012). Acta Cryst. E68, o1222–o1223.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzbey, S., Kaynak, F. B., Eriksson, L., Karali, N. & Gürsoy, A. (2006). Acta Cryst. A62, s174.  CrossRef IUCr Journals Google Scholar
First citationPodichetty, A. K., Faust, A., Kopka, K., Wagner, S., Schober, O., Schäfers, M. & Haufe, G. (2009). Bioorg. Med. Chem. 17, 2680–2688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds