organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Bromo-5-nitro-1H-indazol-1-yl)-1-phenyl­ethanone

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mohammed_benchidmi@yahoo.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 28 March 2017; accepted 12 April 2017; online 18 April 2017)

The 5-nitro-1H-indazol-1-yl moiety of the title compound, C15H10BrN3O3, is approximately planar, with the largest deviation from the mean plane being 0.079 (3) Å. The fused-ring system is virtually perpendicular to the mean plane through the 1-phenyl­ethanone group, making a dihedral angle of 89.7 (2)°. In the crystal, pairs of mol­ecules form inversion dimers via Br⋯O inter­actions [3.211 (2) Å]. The dimers are connected by C—H⋯O and C—H⋯N non-classical hydrogen bonds, in addition to ππ inter­actions [inter­centroid distance = 3.6411 (12) Å], forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, pharmacological tests have revealed that indazole derivatives present various biological activities, being potent anti-tumor (Abbassi et al., 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]); anti-microbial (Li et al., 2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]); and anti-inflammatory (Schmidt et al., 2008[Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. 2008, 4073-4095.]) agents. The crystal structure study of the title compound constitutes a continuation of our previous work on indazole derivatives (Boulhaoua et al., 2015[Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780-o781.]; El Brahmi et al., 2012[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.]).

The mol­ecule of the title compound is build up from fused five- and six-membered rings linked to a nitro group and to 1-phenyl­ethanone group as shown in Fig. 1[link]. The highly anisotropic ellipsoids of the phenyl ring are probably due to oscillation of this group. The fused ring system is approximately planar, with the largest deviation from the mean plane being 0.079 (3) Å at O2, and makes a dihedral angle of 89.7 (2)° with the mean plane through the 1-phenyl­ethanone group (O3/C9–C15).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small circles of arbitrary radius.

In the crystal, pairs of mol­ecules form inversion dimers via Br1⋯O3 [3.211 (2) Å] inter­actions. The dimers are linked by C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) and by ππ inter­actions [inter­centroid distance = 3.6411 (12) Å], forming a three dimensional structure as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.97 2.40 3.315 (3) 157
C8—H8B⋯O1ii 0.97 2.53 3.244 (3) 131
C5—H5⋯N2iii 0.93 2.60 3.508 (3) 166
C6—H6⋯O3i 0.93 2.65 3.502 (3) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Three-dimensional view of the structure of the title compound, showing mol­ecules linked together by hydrogen bonds (dashed blue lines) and ππ inter­actions (green line).

Synthesis and crystallization

To a solution of 3-bromo-5-nitro-1H-indazole (0.5 g, 1.38 mmol) in DMF (15 ml) was added phenacyl bromide (0.27 g, 1.38 mmol), potassium carbonate (0.38 g, 2.76 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from methanol to afford the title compound as yellow crystals (yield: 65%; m.p. = 415 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrN3O3
Mr 360.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.2690 (6), 15.6721 (7), 7.2136 (3)
β (°) 99.029 (2)
V3) 1481.50 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.79
Crystal size (mm) 0.38 × 0.31 × 0.26
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.547, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36498, 3823, 2760
Rint 0.043
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.05
No. of reflections 3823
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.41
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

2-(3-Bromo-5-nitro-1H-indazol-1-yl)-1-phenylethanone top
Crystal data top
C15H10BrN3O3Dx = 1.615 Mg m3
Mr = 360.17Melting point: 415 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2690 (6) ÅCell parameters from 3823 reflections
b = 15.6721 (7) Åθ = 2.6–28.7°
c = 7.2136 (3) ŵ = 2.79 mm1
β = 99.029 (2)°T = 296 K
V = 1481.50 (11) Å3Block, yellow
Z = 40.38 × 0.31 × 0.26 mm
F(000) = 720
Data collection top
Bruker X8 APEX
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube2760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 28.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1317
Tmin = 0.547, Tmax = 0.746k = 2121
36498 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.5228P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58530 (16)0.58951 (14)0.7404 (3)0.0394 (5)
C20.60236 (15)0.67859 (13)0.7387 (3)0.0344 (4)
C30.68138 (15)0.73149 (14)0.7045 (3)0.0372 (4)
H30.74250.70990.67630.045*
C40.66406 (15)0.81759 (15)0.7149 (3)0.0393 (5)
C50.57322 (17)0.85329 (14)0.7571 (3)0.0407 (5)
H50.56600.91230.76130.049*
C60.49523 (16)0.80152 (14)0.7922 (3)0.0383 (5)
H60.43460.82380.82120.046*
C70.51122 (14)0.71293 (14)0.7824 (3)0.0339 (4)
C80.34793 (17)0.64587 (16)0.8557 (3)0.0457 (5)
H8A0.34150.69320.93960.055*
H8B0.33760.59350.92200.055*
C90.26590 (16)0.65326 (14)0.6852 (3)0.0424 (5)
C100.15864 (17)0.64096 (17)0.7165 (4)0.0569 (7)
C110.1326 (2)0.6316 (3)0.8921 (5)0.0850 (10)
H110.18330.63440.99670.102*
C120.0327 (3)0.6182 (3)0.9170 (8)0.1154 (16)
H120.01600.61251.03690.138*
C130.0393 (3)0.6136 (4)0.7660 (11)0.139 (2)
H130.10650.60350.78200.167*
C140.0177 (3)0.6229 (5)0.5930 (11)0.187 (3)
H140.06980.62060.49050.225*
C150.0850 (3)0.6367 (4)0.5643 (7)0.1321 (19)
H150.10100.64250.44390.158*
N10.74533 (16)0.87569 (14)0.6780 (3)0.0524 (5)
N20.49530 (14)0.56952 (12)0.7801 (3)0.0442 (4)
N30.44972 (13)0.64583 (12)0.8077 (3)0.0406 (4)
O10.73418 (17)0.95111 (13)0.6986 (4)0.0893 (7)
O20.82021 (17)0.84566 (15)0.6268 (4)0.0855 (7)
O30.28825 (13)0.66909 (13)0.5328 (3)0.0609 (5)
Br10.67373 (2)0.50413 (2)0.68364 (4)0.05714 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (11)0.0396 (11)0.0430 (12)0.0034 (9)0.0066 (9)0.0003 (9)
C20.0313 (10)0.0390 (10)0.0328 (10)0.0007 (8)0.0047 (8)0.0004 (8)
C30.0302 (10)0.0454 (11)0.0365 (11)0.0004 (8)0.0065 (8)0.0003 (9)
C40.0357 (11)0.0434 (12)0.0389 (12)0.0082 (9)0.0062 (9)0.0030 (9)
C50.0427 (12)0.0375 (11)0.0412 (12)0.0004 (9)0.0045 (9)0.0010 (9)
C60.0336 (10)0.0444 (11)0.0377 (12)0.0025 (9)0.0078 (9)0.0023 (9)
C70.0292 (9)0.0409 (11)0.0317 (10)0.0026 (8)0.0047 (8)0.0001 (8)
C80.0364 (11)0.0502 (13)0.0536 (14)0.0052 (9)0.0169 (10)0.0009 (10)
C90.0358 (11)0.0364 (11)0.0567 (14)0.0013 (9)0.0123 (10)0.0001 (10)
C100.0331 (12)0.0498 (14)0.089 (2)0.0041 (10)0.0141 (12)0.0091 (13)
C110.0444 (16)0.116 (3)0.102 (3)0.0016 (17)0.0338 (17)0.014 (2)
C120.055 (2)0.144 (4)0.158 (4)0.005 (2)0.052 (3)0.032 (3)
C130.043 (2)0.164 (5)0.213 (6)0.000 (2)0.031 (3)0.046 (4)
C140.045 (2)0.344 (11)0.163 (6)0.003 (4)0.016 (3)0.048 (7)
C150.0454 (19)0.233 (6)0.112 (3)0.008 (3)0.006 (2)0.034 (4)
N10.0450 (12)0.0539 (13)0.0596 (13)0.0143 (10)0.0119 (10)0.0035 (10)
N20.0395 (10)0.0397 (10)0.0541 (12)0.0036 (8)0.0099 (8)0.0005 (8)
N30.0315 (9)0.0421 (10)0.0499 (11)0.0028 (7)0.0114 (8)0.0003 (8)
O10.0766 (14)0.0484 (12)0.150 (2)0.0197 (10)0.0394 (14)0.0016 (13)
O20.0570 (12)0.0768 (14)0.134 (2)0.0170 (11)0.0492 (13)0.0045 (14)
O30.0487 (10)0.0787 (13)0.0566 (11)0.0044 (9)0.0123 (8)0.0108 (9)
Br10.05290 (17)0.04388 (16)0.0780 (2)0.00958 (10)0.02077 (14)0.00060 (12)
Geometric parameters (Å, º) top
C1—N21.309 (3)C8—H8B0.9700
C1—C21.415 (3)C9—O31.209 (3)
C1—Br11.867 (2)C9—C101.488 (3)
C2—C31.389 (3)C10—C151.352 (5)
C2—C71.404 (3)C10—C111.372 (4)
C3—C41.373 (3)C11—C121.381 (4)
C3—H30.9300C11—H110.9300
C4—C51.405 (3)C12—C131.333 (7)
C4—N11.467 (3)C12—H120.9300
C5—C61.369 (3)C13—C141.332 (8)
C5—H50.9300C13—H130.9300
C6—C71.408 (3)C14—C151.427 (7)
C6—H60.9300C14—H140.9300
C7—N31.361 (3)C15—H150.9300
C8—N31.446 (3)N1—O11.203 (3)
C8—C91.513 (3)N1—O21.208 (3)
C8—H8A0.9700N2—N31.369 (3)
N2—C1—C2112.99 (18)O3—C9—C8120.5 (2)
N2—C1—Br1120.19 (16)C10—C9—C8116.7 (2)
C2—C1—Br1126.77 (16)C15—C10—C11119.3 (3)
C3—C2—C7120.79 (19)C15—C10—C9118.0 (3)
C3—C2—C1135.80 (19)C11—C10—C9122.6 (3)
C7—C2—C1103.41 (17)C10—C11—C12121.5 (4)
C4—C3—C2116.08 (18)C10—C11—H11119.2
C4—C3—H3122.0C12—C11—H11119.2
C2—C3—H3122.0C13—C12—C11118.8 (4)
C3—C4—C5124.05 (19)C13—C12—H12120.6
C3—C4—N1117.8 (2)C11—C12—H12120.6
C5—C4—N1118.2 (2)C14—C13—C12121.8 (4)
C6—C5—C4120.2 (2)C14—C13—H13119.1
C6—C5—H5119.9C12—C13—H13119.1
C4—C5—H5119.9C13—C14—C15120.2 (5)
C5—C6—C7116.8 (2)C13—C14—H14119.9
C5—C6—H6121.6C15—C14—H14119.9
C7—C6—H6121.6C10—C15—C14118.3 (5)
N3—C7—C2106.83 (18)C10—C15—H15120.8
N3—C7—C6131.08 (19)C14—C15—H15120.8
C2—C7—C6122.09 (19)O1—N1—O2122.9 (2)
N3—C8—C9112.68 (19)O1—N1—C4118.6 (2)
N3—C8—H8A109.1O2—N1—C4118.5 (2)
C9—C8—H8A109.1C1—N2—N3105.19 (17)
N3—C8—H8B109.1C7—N3—N2111.57 (16)
C9—C8—H8B109.1C7—N3—C8129.35 (19)
H8A—C8—H8B107.8N2—N3—C8119.08 (18)
O3—C9—C10122.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.403.315 (3)157
C8—H8B···O1ii0.972.533.244 (3)131
C5—H5···N2iii0.932.603.508 (3)166
C6—H6···O3i0.932.653.502 (3)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: the University Mohammed V, Rabat, Morocco.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBoulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. 2008, 4073–4095.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds