organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-(Hexane-1,6-di­yl)bis­­(1-vinyl-4-imidazoline-2-thione)

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 April 2017; accepted 20 April 2017; online 28 April 2017)

The title compound, C16H22N4S2, was obtained by the reaction of sulfur with the corresponding quaternary salt in the presence of K2CO3. It crystallizes with two half-mol­ecules in the asymmetric unit; the complete mol­ecules are generated by inversion symmetry with the central CH2—CH2 bonds of the hexane bridges being located on inversion centres. In each mol­ecule, the C6-alkyl chain adopts a typical anti­periplanar conformation and the two heterocyclic rings are oriented anti­parallel to each other. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers lying parallel to the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained from 3,3′-(hexane-1,6-di­yl)bis­(1-vinyl­imidazolium) dibromide (Cui et al., 2014[Cui, J., Zhu, W., Gao, N., Li, J., Yang, H., Jiang, Y., Seidel, P., Ravoo, B. J. & Li, G. (2014). Angew. Chem. Int. Ed. 53, 3844-3848.]) by reaction with elemental sulfur in the presence of K2CO3. Imidazoline-2-thio­nes (Laus et al., 2013[Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch Teil B. 68, 1239-1252.]) are versatile building blocks whose properties have been reviewed by Trzhtsinskaya & Abramova (1991[Trzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389-421.]). The crucial advantages of these thio­nes are simple synthesis and simple derivation in the realm of imidazole chemistry, a mainstay of ionic liquid research. A field of current relevance, poly(ionic liquids) are macromolecules derived from organic salts which are liquid below 373 K (Yuan & Antonietti, 2011[Yuan, J. & Antonietti, M. (2011). Polymer, 52, 1469-1482.]). The vinyl substituent renders the title mol­ecule polymerizable, and the bidentate nature of the mol­ecule facilitates cross-linking, thus giving access to a plethora of functionalized imidazolium-containing polymers (Anderson & Long, 2010[Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447-2454.]). They in turn offer a multitude of applications and represent major advances in materials science.

The unit cell contains two independent half-mol­ecules (Fig. 1[link]), which are completed by inversion symmetry. The centres of symmetry lie at the mid-point of the (CH2)6 spacer between the two imidazoline-2-thione rings. As in other bridged bis­(imidazoline-2-thio­nes), the C6-alkyl chain adopts a typical anti­periplanar conformation (Bhabak et al., 2011[Bhabak, K. P., Satheeshkumar, K., Jayavelu, S. & Mugesh, G. (2011). Org. Biomol. Chem. 9, 7343-7350.]; Beheshti et al., 2016[Beheshti, A., Babadi, S. S., Nozarian, K., Heidarizadeh, F., Ghamari, N., Mayer, P. & Motamedi, H. (2016). Polyhedron, 110, 261-273.]), and the two heterocyclic rings are oriented anti­parallel to each other, as can be seen in Fig. 1[link]. The lengths of the C=S bonds are 1.680 (1) and 1.682 (1) Å, in perfect accordance with the mean value (Laus et al., 2013[Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch Teil B. 68, 1239-1252.]) in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Related structures have been reported with short methyl­ene or ethyl­ene bridges (Liu et al., 2003[Liu, Q., Shi, D., Yu, K. & Xu, J. (2003). Acta Cryst. E59, o356-o357.]; Jia et al., 2008[Jia, W.-G., Huang, Y.-B., Lin, Y.-J., Wang, G.-L. & Jin, G.-X. (2008). Eur. J. Inorg. Chem. pp. 4063-4073.]), C3-to-C5 bridges (Bhabak et al., 2011[Bhabak, K. P., Satheeshkumar, K., Jayavelu, S. & Mugesh, G. (2011). Org. Biomol. Chem. 9, 7343-7350.]; Beheshti et al., 2016[Beheshti, A., Babadi, S. S., Nozarian, K., Heidarizadeh, F., Ghamari, N., Mayer, P. & Motamedi, H. (2016). Polyhedron, 110, 261-273.]), and longer linkers (Marshall et al., 2005[Marshall, C., Ward, M. F. & Harrison, W. T. A. (2005). J. Organomet. Chem. 690, 3970-3975.]; Marshall & Harrison, 2007[Marshall, C. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4878.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by symmetry operations (−x + 1, −y + 1, −z + 2) for mol­ecule A and (−x, −y + 1, −z + 1) for mol­ecule B.

In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers lying parallel to the ac plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and N3/N4/C9–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg2i 0.99 2.75 3.628 (2) 148
C15—H15BCg1ii 0.99 2.76 3.589 (2) 142
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, (colour code: blue A mol­ecules, red B mol­ecules). The C—H⋯π inter­actions are shown as dashed lines, and only H atoms H8B and H15B (blue and red balls, respectively) have been included.

Synthesis and crystallization

A mixture of 3,3′-(hexane-1,6-di­yl)bis­(1-vinyl­imidazolium) dibromide (55.6 g, 129 mmol), sulfur (8.25 g, 257 mmol) and K2CO3 (35.6 g, 257 mmol) in MeOH (200 ml) was refluxed for 3 h. After evaporation of the solvent under reduced pressure, the residue was extracted with hot CHCl3 (3 × 250 ml), followed by hot filtration and evaporation of the solvent. To the residue, EtOH (200 ml) was added and the mixture was ultrasonicated for 30 min. The product was collected by filtration and dried in high vacuum for 24 h (yield 40.0 g, 93%; m.p. 423 K). Single crystals were obtained by slow evaporation of a CHCl3 solution. 1H NMR (300 MHz, CDCl3): δ 1.29 (m, 4H), 1.68 (m, 4H), 3.92 (t, J = 7.4 Hz, 4H), 4.80 (dd, J = 9.0, 1.8 Hz, 2H), 5.05 (dd, J = 16.1, 1.8 Hz, 2H), 6.68 (d, J = 2.6 Hz, 2H), 6.91 (d, J = 2.6 Hz, 2H), 7.44 (dd, J = 16.1, 9.0 Hz, 2H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 25.7, 28.2, 47.2, 100.6, 112.4, 118.1, 130.0, 162.3 p.p.m. IR (neat): ν 3126, 3092, 2943, 2855, 1639, 1454, 1421, 1401, 1363, 1288, 1259, 1233, 1160, 975, 875, 831, 762, 742, 718, 697, 659, 518, 486 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H22N4S2
Mr 334.5
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.1335 (5), 10.6863 (5), 11.8830 (6)
α, β, γ (°) 99.856 (4), 93.530 (5), 101.937 (5)
V3) 868.75 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.54 × 0.2 × 0.14
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.880, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 5545, 3151, 2821
Rint 0.013
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.05
No. of reflections 3151
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: (CrysAlis PRO; Agilent, 2014); cell refinement: (CrysAlis PRO; Agilent, 2014); data reduction: (CrysAlis PRO; Agilent, 2014); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

3,3'-(Hexane-1,6-diyl)bis(1-vinyl-4-imidazoline-2-thione) top
Crystal data top
C16H22N4S2Z = 2
Mr = 334.5F(000) = 356
Triclinic, P1Dx = 1.279 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1335 (5) ÅCell parameters from 3343 reflections
b = 10.6863 (5) Åθ = 4.0–28.5°
c = 11.8830 (6) ŵ = 0.31 mm1
α = 99.856 (4)°T = 173 K
β = 93.530 (5)°Prismatic fragment, colourless
γ = 101.937 (5)°0.54 × 0.2 × 0.14 mm
V = 868.75 (9) Å3
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
3151 independent reflections
Radiation source: Enhance (Mo) X-ray Source2821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 10.3575 pixels mm-1θmax = 25.4°, θmin = 3.5°
ω scansh = 68
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1211
Tmin = 0.880, Tmax = 1l = 1413
5545 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.3242P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42181 (5)0.23294 (4)0.56557 (3)0.03198 (11)
S20.05723 (5)0.23677 (4)0.07703 (3)0.03264 (11)
N40.22259 (16)0.40254 (11)0.23089 (10)0.0230 (3)
N30.28775 (16)0.21338 (11)0.17699 (10)0.0234 (3)
N20.16867 (17)0.19534 (11)0.72562 (10)0.0237 (3)
N10.02845 (16)0.16137 (10)0.55287 (10)0.0216 (2)
C10.20569 (19)0.19571 (12)0.61534 (11)0.0212 (3)
C140.1222 (2)0.50945 (14)0.24615 (12)0.0270 (3)
H14A0.05250.51120.1720.032*
H14B0.21780.5930.26990.032*
C90.15171 (19)0.28462 (13)0.16221 (11)0.0231 (3)
C70.3279 (2)0.37721 (14)0.87953 (12)0.0268 (3)
H7A0.20610.38510.91290.032*
H7B0.34360.43140.81950.032*
C80.4943 (2)0.42931 (14)0.97290 (12)0.0269 (3)
H8A0.61640.4220.93970.032*
H8B0.4790.37541.03310.032*
C110.3978 (2)0.40436 (14)0.28805 (12)0.0263 (3)
H110.4750.47560.34140.032*
C100.4393 (2)0.28843 (14)0.25507 (12)0.0268 (3)
H100.55150.2620.28020.032*
C150.0198 (2)0.49571 (14)0.33577 (12)0.0252 (3)
H15A0.11080.410.31330.03*
H15B0.09520.56380.33620.03*
C120.2730 (2)0.08475 (14)0.11905 (13)0.0279 (3)
H120.15620.04260.07290.033*
C130.4068 (3)0.01920 (17)0.12376 (17)0.0465 (5)
H13A0.52580.05790.1690.056*
H13B0.38570.06750.0820.056*
C160.07338 (19)0.50680 (13)0.45661 (12)0.0240 (3)
H16A0.14780.43830.4570.029*
H16B0.16450.59240.47960.029*
C60.3136 (2)0.23646 (14)0.82447 (12)0.0292 (3)
H6A0.44030.22580.79970.035*
H6B0.27970.18030.88170.035*
C50.1648 (2)0.12107 (15)0.37121 (14)0.0354 (4)
H5A0.28010.10190.4070.042*
H5B0.17070.11730.29060.042*
C30.0276 (2)0.16310 (14)0.73221 (13)0.0287 (3)
H30.08940.15750.80030.034*
C20.1148 (2)0.14119 (14)0.62602 (13)0.0275 (3)
H20.24970.11640.60440.033*
C40.0022 (2)0.15270 (13)0.43297 (12)0.0260 (3)
H40.11420.17120.39410.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02078 (19)0.0399 (2)0.0333 (2)0.00365 (15)0.00389 (15)0.00479 (17)
S20.0251 (2)0.0409 (2)0.0281 (2)0.00743 (16)0.00448 (15)0.00125 (16)
N40.0222 (6)0.0255 (6)0.0207 (6)0.0046 (5)0.0047 (5)0.0026 (5)
N30.0205 (6)0.0255 (6)0.0233 (6)0.0037 (5)0.0020 (5)0.0037 (5)
N20.0252 (6)0.0235 (6)0.0210 (6)0.0047 (5)0.0004 (5)0.0025 (5)
N10.0202 (6)0.0207 (6)0.0229 (6)0.0043 (4)0.0004 (5)0.0027 (4)
C10.0229 (7)0.0174 (6)0.0227 (7)0.0053 (5)0.0008 (5)0.0018 (5)
C140.0310 (8)0.0257 (7)0.0262 (7)0.0091 (6)0.0047 (6)0.0059 (6)
C90.0224 (7)0.0277 (7)0.0194 (7)0.0041 (6)0.0060 (5)0.0052 (5)
C70.0282 (7)0.0297 (8)0.0209 (7)0.0040 (6)0.0020 (6)0.0048 (6)
C80.0273 (7)0.0335 (8)0.0188 (7)0.0041 (6)0.0005 (6)0.0059 (6)
C110.0217 (7)0.0307 (8)0.0227 (7)0.0000 (6)0.0014 (6)0.0023 (6)
C100.0212 (7)0.0310 (8)0.0265 (8)0.0038 (6)0.0011 (6)0.0045 (6)
C150.0248 (7)0.0248 (7)0.0265 (7)0.0084 (6)0.0035 (6)0.0020 (6)
C120.0269 (8)0.0253 (7)0.0289 (8)0.0019 (6)0.0024 (6)0.0029 (6)
C130.0357 (9)0.0348 (9)0.0623 (12)0.0109 (7)0.0056 (8)0.0091 (8)
C160.0218 (7)0.0231 (7)0.0262 (7)0.0056 (5)0.0035 (6)0.0016 (6)
C60.0327 (8)0.0325 (8)0.0219 (7)0.0077 (6)0.0047 (6)0.0053 (6)
C50.0386 (9)0.0352 (8)0.0305 (8)0.0084 (7)0.0077 (7)0.0045 (7)
C30.0280 (8)0.0278 (7)0.0303 (8)0.0044 (6)0.0078 (6)0.0058 (6)
C20.0198 (7)0.0268 (7)0.0350 (8)0.0038 (6)0.0035 (6)0.0044 (6)
C40.0316 (8)0.0219 (7)0.0237 (7)0.0066 (6)0.0004 (6)0.0024 (6)
Geometric parameters (Å, º) top
S1—C11.6805 (14)C8—H8B0.99
S2—C91.6820 (14)C11—C101.333 (2)
N4—C91.3576 (18)C11—H110.95
N4—C111.3799 (18)C10—H100.95
N4—C141.4609 (18)C15—C161.5196 (19)
N3—C91.3721 (18)C15—H15A0.99
N3—C101.3914 (18)C15—H15B0.99
N3—C121.4078 (18)C12—C131.299 (2)
N2—C11.3531 (18)C12—H120.95
N2—C31.3812 (18)C13—H13A0.95
N2—C61.4585 (18)C13—H13B0.95
N1—C11.3724 (17)C16—C16ii1.517 (3)
N1—C21.3889 (18)C16—H16A0.99
N1—C41.4101 (18)C16—H16B0.99
C14—C151.5188 (19)C6—H6A0.99
C14—H14A0.99C6—H6B0.99
C14—H14B0.99C5—C41.309 (2)
C7—C61.514 (2)C5—H5A0.95
C7—C81.5178 (19)C5—H5B0.95
C7—H7A0.99C3—C21.333 (2)
C7—H7B0.99C3—H30.95
C8—C8i1.521 (3)C2—H20.95
C8—H8A0.99C4—H40.95
C9—N4—C11110.30 (12)C11—C10—N3107.23 (13)
C9—N4—C14124.54 (12)C11—C10—H10126.4
C11—N4—C14125.10 (12)N3—C10—H10126.4
C9—N3—C10109.60 (12)C14—C15—C16114.16 (12)
C9—N3—C12123.89 (12)C14—C15—H15A108.7
C10—N3—C12126.51 (12)C16—C15—H15A108.7
C1—N2—C3110.19 (12)C14—C15—H15B108.7
C1—N2—C6124.83 (12)C16—C15—H15B108.7
C3—N2—C6124.68 (12)H15A—C15—H15B107.6
C1—N1—C2109.63 (11)C13—C12—N3125.10 (14)
C1—N1—C4123.53 (12)C13—C12—H12117.4
C2—N1—C4126.82 (12)N3—C12—H12117.4
N2—C1—N1105.20 (11)C12—C13—H13A120
N2—C1—S1127.50 (10)C12—C13—H13B120
N1—C1—S1127.29 (10)H13A—C13—H13B120
N4—C14—C15111.76 (11)C16ii—C16—C15112.40 (14)
N4—C14—H14A109.3C16ii—C16—H16A109.1
C15—C14—H14A109.3C15—C16—H16A109.1
N4—C14—H14B109.3C16ii—C16—H16B109.1
C15—C14—H14B109.3C15—C16—H16B109.1
H14A—C14—H14B107.9H16A—C16—H16B107.9
N4—C9—N3105.07 (12)N2—C6—C7111.33 (12)
N4—C9—S2127.37 (11)N2—C6—H6A109.4
N3—C9—S2127.56 (11)C7—C6—H6A109.4
C6—C7—C8113.07 (12)N2—C6—H6B109.4
C6—C7—H7A109C7—C6—H6B109.4
C8—C7—H7A109H6A—C6—H6B108
C6—C7—H7B109C4—C5—H5A120
C8—C7—H7B109C4—C5—H5B120
H7A—C7—H7B107.8H5A—C5—H5B120
C7—C8—C8i112.14 (15)C2—C3—N2107.85 (13)
C7—C8—H8A109.2C2—C3—H3126.1
C8i—C8—H8A109.2N2—C3—H3126.1
C7—C8—H8B109.2C3—C2—N1107.13 (12)
C8i—C8—H8B109.2C3—C2—H2126.4
H8A—C8—H8B107.9N1—C2—H2126.4
C10—C11—N4107.79 (12)C5—C4—N1124.94 (14)
C10—C11—H11126.1C5—C4—H4117.5
N4—C11—H11126.1N1—C4—H4117.5
C3—N2—C1—N10.75 (15)C9—N4—C11—C100.59 (15)
C6—N2—C1—N1174.72 (12)C14—N4—C11—C10177.66 (12)
C3—N2—C1—S1178.20 (10)N4—C11—C10—N30.32 (15)
C6—N2—C1—S14.2 (2)C9—N3—C10—C110.04 (16)
C2—N1—C1—N20.35 (14)C12—N3—C10—C11178.96 (13)
C4—N1—C1—N2178.70 (11)N4—C14—C15—C1665.34 (16)
C2—N1—C1—S1178.60 (10)C9—N3—C12—C13173.65 (16)
C4—N1—C1—S10.25 (19)C10—N3—C12—C135.2 (2)
C9—N4—C14—C1583.69 (16)C14—C15—C16—C16ii179.71 (14)
C11—N4—C14—C1592.97 (15)C1—N2—C6—C795.37 (16)
C11—N4—C9—N30.59 (14)C3—N2—C6—C777.73 (17)
C14—N4—C9—N3177.68 (11)C8—C7—C6—N2172.50 (12)
C11—N4—C9—S2179.67 (10)C1—N2—C3—C20.89 (16)
C14—N4—C9—S22.58 (19)C6—N2—C3—C2174.87 (13)
C10—N3—C9—N40.39 (14)N2—C3—C2—N10.64 (16)
C12—N3—C9—N4178.64 (12)C1—N1—C2—C30.18 (15)
C10—N3—C9—S2179.88 (10)C4—N1—C2—C3178.10 (13)
C12—N3—C9—S21.09 (19)C1—N1—C4—C5179.54 (14)
C6—C7—C8—C8i179.90 (15)C2—N1—C4—C51.5 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and N3/N4/C9–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg2iii0.992.753.628 (2)148
C15—H15B···Cg1ii0.992.763.589 (2)142
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y, z+1.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447–2454.  Web of Science CrossRef CAS Google Scholar
First citationBeheshti, A., Babadi, S. S., Nozarian, K., Heidarizadeh, F., Ghamari, N., Mayer, P. & Motamedi, H. (2016). Polyhedron, 110, 261–273.  CrossRef CAS Google Scholar
First citationBhabak, K. P., Satheeshkumar, K., Jayavelu, S. & Mugesh, G. (2011). Org. Biomol. Chem. 9, 7343–7350.  CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCui, J., Zhu, W., Gao, N., Li, J., Yang, H., Jiang, Y., Seidel, P., Ravoo, B. J. & Li, G. (2014). Angew. Chem. Int. Ed. 53, 3844–3848.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, W.-G., Huang, Y.-B., Lin, Y.-J., Wang, G.-L. & Jin, G.-X. (2008). Eur. J. Inorg. Chem. pp. 4063–4073.  CrossRef Google Scholar
First citationLaus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch Teil B. 68, 1239–1252.  CAS Google Scholar
First citationLiu, Q., Shi, D., Yu, K. & Xu, J. (2003). Acta Cryst. E59, o356–o357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarshall, C. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4878.  CrossRef IUCr Journals Google Scholar
First citationMarshall, C., Ward, M. F. & Harrison, W. T. A. (2005). J. Organomet. Chem. 690, 3970–3975.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389–421.  CrossRef CAS Google Scholar
First citationYuan, J. & Antonietti, M. (2011). Polymer, 52, 1469–1482.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds