organic compounds
3-(2-Chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione chloroform monosolvate
aThe German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt, and bInstitute of Pharmacy and Food Chemistry, Wuerzburg University, 97074 Wuerzburg, Germany
*Correspondence e-mail: darius.zlotos@guc.edu.eg
The solvated title compound, C13H8ClN3O2·CHCl3, is a product of a condensation reaction between 2-amino-N-(2-chloropyridin-3-yl)benzamide and phosgene. The presence of the chlorine substituent in the pyridine ring forces the latter to adopt a nearly perpendicular orientation relative to the planar quinazoline ring (r.m.s. deviation = 0.04 Å), the two ring systems being inclined to one another by 84.28 (9)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along the a-axis direction. The chloroform solvent molecules are linked to the organic molecule by C—H⋯N hydrogen bonds.
Keywords: crystal structure; quinazoline-2,4-dione; hydrogen bonding.
CCDC reference: 1024197
Structure description
The title compound results from our ongoing research aimed at the development of subtype-selective ligands for muscarinic receptors (Tahtaoui et al., 2004; Mohr et al., 2010). It was isolated as a side-product in the course of the synthesis of AFDX-type allosteric modulators of muscarinic M2 receptors (Mohr et al., 2004). Specifically, the incomplete condensation between ethyl 2-aminobenzoate and 3-amino-2-chloropyridine (Holzgrabe & Heller, 2003) gave the ring-opened 2-amino-N-(2-chloropyridin-3-yl)benzamide (1) in 23% yield. This compound, (1), was subjected to condensation with phosgene giving the title compound (2) in 85% yield. This two-step approach is of general interest for the synthesis of differently substituted (1H,3H)-quinazoline-2,4-diones.
The molecular structure of the title compound (2), which crystallized as a chloroform monosolvate, is shown in Fig. 1. The pyridine ring (N1/C1–C5) is nearly perpendicular to the planar quinazoline ring (N2/N3/C6–C13; r.m.s. deviation = 0.04 Å), making a dihedral angle of 84.28 (9)°.
In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds forming inversion dimers, with an R22(8) ring motif (Fig. 2 and Table 1). The chloroform solvate molecules are linked to the organic molecule by C—H⋯N hydrogen bonds, and the dimers are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along the a-axis direction (Fig. 2 and Table 1).
Synthesis and crystallization
2-Amino-N-(2-chloropyridin-3-yl)benzamide (1).
3-Amino-2-chloropyridine (2.57 g, 20.0 mmol), ethyl 2-aminobenzoate (3.39 g, 20.5 mmol) and KOtBu (7.29 g, 65.0 mmol) were suspended in dry 1,4-dioxane (100 ml) under argon. The mixture was heated by microwaves (gradient of heating: 2 min to 333 K; holding time: 10 min at 333 K; gradient of heating: 3 min from 333–373 K; holding time: 2.5 h at 373 K). After cooling to 298 K, the solution was treated with 1 M NaH2PO4 (60 ml) and stirred for 30 min. The dioxane was evaporated in vacuo and the residue was treated with 50 ml water. The solid obtained was filtered and dried. The product (1) was then purified by silica (ethyl acetate/petroleum ether 1:1, Rf = 0.78), giving a pale-yellow solid (yield: 1.16 g, 23.3%; m.p. 477.3 K). 1H NMR (400 MHz, DMSO-d6) δ 9.89 (1H, br, N—H), 8.29 (1H, dd, J = 4.7, 1.8 Hz), 8.07 (1H, dd, J = 7.9, 1.8 Hz), 7.74 (1H, dd, J = 8.1, 1.5 Hz), 7.49 (1H, dd, J = 7.9, 4.7 Hz), 7.24 (1H, ddd, J = 8.4, 7.1, 1.5 Hz), 6.79 (1H, dd, J = 8.4, 1.2 Hz), 6.62 (1H, ddd, J = 8.1, 7.1, 1.2 Hz), 6.47 (2H, br, NH2). 13C NMR (100 MHz, DMSO-d6) δ 168.27 (C= O), 150.73, 146.71 (C—Cl), 146.68 (CH), 136.96 (C), 133.22 (C), 132.82 (C), 129.25 (C), 123.85 (CH), 117.22 (C), 115.35 (C), 113.86 (C). IR (ATR, cm−1): 3433 (NH), 3330, 3286 (NH2), 3073 (CH), 1644 (C=O amide), 1616, 1578, 1569, 1503, 1486, 1391, 802, 743, 735. MS (ESI): m/z (%): 248.2 (M+1).
3-(2-Chloropyridin-3-yl)quinazoline-2,4-(1H,3H)dione (2).
Compound (1) (4.22 g, 20.0 mmol) and Hueunig's base (7.0 ml, 40.0 mmol) were dissolved in dry 1,4-dioxane (150 ml) under argon. A solution of 20% phosgene in toluene (18.5 ml, 35.0 mmol) was added dropwise over 30 min. The solution was heated using microwaves (gradient of heating: 3 min to 358 K; holding time: 2 h at 358 K). After cooling to 298 K, the mixture was quenched with 1.0 M NaH2PO4 (100 ml) and stirred for 1 h at room temperature. The dioxane was evaporated and the solid obtained was filtered by suction and dried over P4O10, giving a white solid (yield: 4.68 g, 85.5%; m.p. 510.6 K). The product was recrystallized from chloroform giving colourless block-like crystals of the title compound (2). 1H NMR (400 MHz, CDCl3) δ 10.52 (1H, br, N—H), 8.56 (1H, dd, J = 4.8, 1.8 Hz), 8.15 (1H, dd, J = 7.9, 1.1 Hz), 7.76 (1H, dd, J = 7.8, 1.8 Hz), 7.61 (1H, ddd, J = 8.1, 7.0, 1.1 Hz), 7.46 (1H, dd, J = 7.8, 4.8 Hz), 7.27 (1H, ddd, J = 7.9, 7.0, 1.0 Hz), 7.02 (1H, dd, J = 8.1, 1.0 Hz). 13C NMR (100 MHz, CDCl3) δ 161.58 (C=O), 150.95 (C=O), 150.40 (C—Cl), 149.94 (CH), 139.64 (C), 138.87 (C), 135.94 (C), 129.94 (C), 128.73 (C), 123.99 (C), 123.39 (CH), 115.70 (C), 114.34 (C). IR (ATR, cm−1): 3348 (NH), 3072 (CH), 1680 (C=O), 1730 (C=O), 1580, 734. MS (ESI): m/z (%): 274.6 (M+1).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1024197
https://doi.org/10.1107/S2414314617005806/su4148sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617005806/su4148Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005806/su4148Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004) and publCIF (Westrip (2010).C13H8ClN3O2·CHCl3 | F(000) = 792 |
Mr = 393.04 | Dx = 1.646 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6382 (11) Å | Cell parameters from 3659 reflections |
b = 13.622 (3) Å | θ = 2.5–26.4° |
c = 20.662 (4) Å | µ = 0.76 mm−1 |
β = 92.289 (6)° | T = 100 K |
V = 1585.7 (5) Å3 | Block, colourless |
Z = 4 | 0.59 × 0.32 × 0.26 mm |
Bruker APEXII CCD diffractometer | 2796 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.054 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 26.8°, θmin = 1.8° |
Tmin = 0.656, Tmax = 0.980 | h = −7→7 |
15463 measured reflections | k = −17→16 |
3370 independent reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.6894P] where P = (Fo2 + 2Fc2)/3 |
3370 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.12965 (11) | 0.78921 (4) | 0.58061 (3) | 0.02149 (16) | |
Cl2 | 0.36470 (11) | 0.13451 (5) | 0.50999 (3) | 0.02813 (17) | |
Cl3 | 0.40964 (14) | 0.12297 (5) | 0.64924 (3) | 0.03261 (19) | |
Cl4 | −0.03576 (12) | 0.07201 (5) | 0.58295 (4) | 0.03620 (19) | |
O2 | 0.1523 (3) | 0.60895 (12) | 0.73418 (7) | 0.0176 (4) | |
O1 | 0.5724 (3) | 0.60283 (12) | 0.55085 (8) | 0.0213 (4) | |
N2 | 0.3498 (3) | 0.60913 (13) | 0.64027 (9) | 0.0136 (4) | |
N1 | 0.4692 (4) | 0.87525 (14) | 0.64811 (9) | 0.0186 (4) | |
N3 | 0.2842 (4) | 0.48850 (14) | 0.56200 (9) | 0.0172 (4) | |
H3 | 0.3204 | 0.4603 | 0.5254 | 0.021* | |
C10 | −0.2711 (4) | 0.36988 (17) | 0.66329 (12) | 0.0217 (5) | |
H10 | −0.3989 | 0.3427 | 0.6859 | 0.026* | |
C11 | −0.1409 (4) | 0.44692 (16) | 0.69008 (11) | 0.0172 (5) | |
H11 | −0.1781 | 0.4724 | 0.7313 | 0.021* | |
C5 | 0.6601 (4) | 0.87655 (17) | 0.68915 (11) | 0.0191 (5) | |
H5 | 0.7306 | 0.9381 | 0.6997 | 0.023* | |
C6 | 0.4117 (4) | 0.56808 (16) | 0.58157 (10) | 0.0158 (5) | |
C4 | 0.7592 (4) | 0.79289 (17) | 0.71677 (11) | 0.0186 (5) | |
H4 | 0.8932 | 0.7968 | 0.7460 | 0.022* | |
C12 | 0.0464 (4) | 0.48717 (16) | 0.65602 (10) | 0.0139 (4) | |
C9 | −0.2150 (4) | 0.33221 (17) | 0.60333 (12) | 0.0226 (5) | |
H9 | −0.3059 | 0.2795 | 0.5853 | 0.027* | |
C3 | 0.6576 (4) | 0.70314 (16) | 0.70056 (11) | 0.0168 (5) | |
H3A | 0.7219 | 0.6441 | 0.7184 | 0.020* | |
C8 | −0.0304 (5) | 0.36989 (17) | 0.56961 (12) | 0.0209 (5) | |
H8 | 0.0080 | 0.3428 | 0.5290 | 0.025* | |
C7 | 0.1001 (4) | 0.44849 (16) | 0.59596 (11) | 0.0156 (5) | |
C13 | 0.1806 (4) | 0.57113 (16) | 0.68188 (10) | 0.0137 (4) | |
C2 | 0.4630 (4) | 0.70030 (16) | 0.65844 (10) | 0.0135 (4) | |
C1 | 0.3755 (4) | 0.78838 (16) | 0.63368 (10) | 0.0154 (5) | |
C14 | 0.2739 (4) | 0.07115 (17) | 0.57913 (11) | 0.0181 (5) | |
H14 | 0.3274 | 0.0014 | 0.5759 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0248 (3) | 0.0162 (3) | 0.0229 (3) | 0.0005 (2) | −0.0065 (2) | 0.0010 (2) |
Cl2 | 0.0266 (3) | 0.0344 (4) | 0.0234 (3) | −0.0062 (3) | 0.0005 (2) | 0.0095 (2) |
Cl3 | 0.0510 (5) | 0.0250 (3) | 0.0219 (3) | −0.0152 (3) | 0.0019 (3) | −0.0036 (2) |
Cl4 | 0.0211 (3) | 0.0288 (4) | 0.0594 (5) | −0.0018 (3) | 0.0103 (3) | 0.0094 (3) |
O2 | 0.0216 (9) | 0.0148 (8) | 0.0166 (8) | −0.0002 (7) | 0.0025 (6) | −0.0021 (6) |
O1 | 0.0281 (10) | 0.0146 (8) | 0.0218 (9) | −0.0078 (7) | 0.0100 (7) | −0.0063 (6) |
N2 | 0.0179 (10) | 0.0071 (9) | 0.0159 (9) | −0.0027 (7) | 0.0020 (7) | −0.0021 (7) |
N1 | 0.0277 (11) | 0.0089 (9) | 0.0191 (10) | −0.0023 (8) | 0.0004 (8) | 0.0001 (7) |
N3 | 0.0237 (11) | 0.0113 (9) | 0.0168 (9) | −0.0052 (8) | 0.0040 (8) | −0.0045 (7) |
C10 | 0.0199 (13) | 0.0121 (12) | 0.0331 (14) | −0.0036 (10) | 0.0026 (10) | 0.0036 (9) |
C11 | 0.0175 (12) | 0.0120 (11) | 0.0222 (12) | 0.0021 (9) | 0.0019 (9) | 0.0026 (9) |
C5 | 0.0266 (13) | 0.0110 (11) | 0.0197 (12) | −0.0048 (10) | 0.0023 (9) | −0.0029 (8) |
C6 | 0.0203 (12) | 0.0096 (11) | 0.0175 (11) | −0.0009 (9) | 0.0018 (9) | −0.0006 (8) |
C4 | 0.0192 (12) | 0.0172 (12) | 0.0194 (12) | −0.0025 (10) | −0.0010 (9) | −0.0026 (9) |
C12 | 0.0153 (11) | 0.0074 (10) | 0.0189 (11) | 0.0017 (9) | −0.0008 (8) | 0.0022 (8) |
C9 | 0.0228 (13) | 0.0104 (11) | 0.0344 (14) | −0.0053 (10) | −0.0006 (10) | −0.0018 (10) |
C3 | 0.0206 (12) | 0.0111 (11) | 0.0190 (11) | 0.0020 (9) | 0.0035 (9) | −0.0009 (8) |
C8 | 0.0274 (13) | 0.0115 (11) | 0.0239 (12) | −0.0021 (10) | 0.0010 (10) | −0.0032 (9) |
C7 | 0.0183 (12) | 0.0081 (10) | 0.0203 (11) | 0.0006 (9) | 0.0003 (9) | 0.0014 (8) |
C13 | 0.0150 (11) | 0.0098 (10) | 0.0165 (11) | 0.0043 (9) | 0.0009 (8) | 0.0021 (8) |
C2 | 0.0172 (11) | 0.0089 (10) | 0.0148 (10) | −0.0018 (9) | 0.0053 (8) | −0.0020 (8) |
C1 | 0.0197 (12) | 0.0113 (11) | 0.0152 (11) | −0.0011 (9) | 0.0009 (8) | −0.0004 (8) |
C14 | 0.0210 (12) | 0.0113 (11) | 0.0221 (12) | −0.0012 (10) | 0.0024 (9) | −0.0004 (9) |
Cl1—C1 | 1.733 (2) | C11—H11 | 0.9500 |
Cl2—C14 | 1.763 (2) | C11—C12 | 1.404 (3) |
Cl3—C14 | 1.759 (2) | C5—H5 | 0.9500 |
Cl4—C14 | 1.751 (2) | C5—C4 | 1.383 (3) |
O2—C13 | 1.214 (3) | C4—H4 | 0.9500 |
O1—C6 | 1.222 (3) | C4—C3 | 1.385 (3) |
N2—C6 | 1.393 (3) | C12—C7 | 1.392 (3) |
N2—C13 | 1.408 (3) | C12—C13 | 1.461 (3) |
N2—C2 | 1.439 (3) | C9—H9 | 0.9500 |
N1—C5 | 1.343 (3) | C9—C8 | 1.375 (4) |
N1—C1 | 1.325 (3) | C3—H3A | 0.9500 |
N3—H3 | 0.8800 | C3—C2 | 1.373 (3) |
N3—C6 | 1.354 (3) | C8—H8 | 0.9500 |
N3—C7 | 1.387 (3) | C8—C7 | 1.397 (3) |
C10—H10 | 0.9500 | C2—C1 | 1.387 (3) |
C10—C11 | 1.383 (3) | C14—H14 | 1.0000 |
C10—C9 | 1.389 (3) | ||
C6—N2—C13 | 125.71 (19) | C8—C9—C10 | 121.2 (2) |
C6—N2—C2 | 116.71 (18) | C8—C9—H9 | 119.4 |
C13—N2—C2 | 117.53 (18) | C4—C3—H3A | 120.3 |
C1—N1—C5 | 117.1 (2) | C2—C3—C4 | 119.3 (2) |
C6—N3—H3 | 117.9 | C2—C3—H3A | 120.3 |
C6—N3—C7 | 124.24 (19) | C9—C8—H8 | 120.5 |
C7—N3—H3 | 117.9 | C9—C8—C7 | 119.1 (2) |
C11—C10—H10 | 120.0 | C7—C8—H8 | 120.5 |
C11—C10—C9 | 120.1 (2) | N3—C7—C12 | 119.7 (2) |
C9—C10—H10 | 120.0 | N3—C7—C8 | 119.8 (2) |
C10—C11—H11 | 120.2 | C12—C7—C8 | 120.5 (2) |
C10—C11—C12 | 119.6 (2) | O2—C13—N2 | 120.3 (2) |
C12—C11—H11 | 120.2 | O2—C13—C12 | 125.0 (2) |
N1—C5—H5 | 118.3 | N2—C13—C12 | 114.72 (18) |
N1—C5—C4 | 123.4 (2) | C3—C2—N2 | 121.6 (2) |
C4—C5—H5 | 118.3 | C3—C2—C1 | 118.2 (2) |
O1—C6—N2 | 120.9 (2) | C1—C2—N2 | 120.2 (2) |
O1—C6—N3 | 123.4 (2) | N1—C1—Cl1 | 115.99 (17) |
N3—C6—N2 | 115.66 (19) | N1—C1—C2 | 123.8 (2) |
C5—C4—H4 | 120.9 | C2—C1—Cl1 | 120.18 (17) |
C5—C4—C3 | 118.1 (2) | Cl2—C14—H14 | 108.3 |
C3—C4—H4 | 120.9 | Cl3—C14—Cl2 | 109.87 (12) |
C11—C12—C13 | 120.8 (2) | Cl3—C14—H14 | 108.3 |
C7—C12—C11 | 119.6 (2) | Cl4—C14—Cl2 | 110.84 (13) |
C7—C12—C13 | 119.6 (2) | Cl4—C14—Cl3 | 111.24 (13) |
C10—C9—H9 | 119.4 | Cl4—C14—H14 | 108.3 |
N2—C2—C1—Cl1 | −0.1 (3) | C4—C3—C2—C1 | 0.0 (3) |
N2—C2—C1—N1 | 179.9 (2) | C9—C10—C11—C12 | 0.6 (4) |
N1—C5—C4—C3 | 0.8 (4) | C9—C8—C7—N3 | −178.8 (2) |
C10—C11—C12—C7 | −0.5 (3) | C9—C8—C7—C12 | 1.0 (4) |
C10—C11—C12—C13 | 177.5 (2) | C3—C2—C1—Cl1 | −179.73 (17) |
C10—C9—C8—C7 | −1.0 (4) | C3—C2—C1—N1 | 0.2 (3) |
C11—C10—C9—C8 | 0.2 (4) | C7—N3—C6—O1 | −179.5 (2) |
C11—C12—C7—N3 | 179.6 (2) | C7—N3—C6—N2 | 0.9 (3) |
C11—C12—C7—C8 | −0.3 (3) | C7—C12—C13—O2 | −178.2 (2) |
C11—C12—C13—O2 | 3.9 (3) | C7—C12—C13—N2 | 3.1 (3) |
C11—C12—C13—N2 | −174.84 (19) | C13—N2—C6—O1 | −175.0 (2) |
C5—N1—C1—Cl1 | −179.98 (17) | C13—N2—C6—N3 | 4.6 (3) |
C5—N1—C1—C2 | 0.1 (3) | C13—N2—C2—C3 | 84.3 (3) |
C5—C4—C3—C2 | −0.5 (3) | C13—N2—C2—C1 | −95.3 (2) |
C6—N2—C13—O2 | 174.7 (2) | C13—C12—C7—N3 | 1.6 (3) |
C6—N2—C13—C12 | −6.5 (3) | C13—C12—C7—C8 | −178.3 (2) |
C6—N2—C2—C3 | −98.0 (3) | C2—N2—C6—O1 | 7.4 (3) |
C6—N2—C2—C1 | 82.4 (3) | C2—N2—C6—N3 | −172.91 (19) |
C6—N3—C7—C12 | −3.9 (3) | C2—N2—C13—O2 | −7.8 (3) |
C6—N3—C7—C8 | 176.0 (2) | C2—N2—C13—C12 | 171.01 (19) |
C4—C3—C2—N2 | −179.6 (2) | C1—N1—C5—C4 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.88 | 1.91 | 2.791 (3) | 175 |
C14—H14···N1ii | 1.00 | 2.39 | 3.200 (3) | 137 |
C3—H3A···O2iii | 0.95 | 2.48 | 3.123 (3) | 125 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1, y, z. |
Acknowledgements
The authors thank Andreas Lorbach and Todd B. Marder (Institute of Inorganic Chemistry, Wuerzburg University) for the data collection and structure solution. We appreciate the financial support provided to NSR by the Deutscher Akademischer Austauschdienst (DAAD).
Funding information
Funding for this research was provided by: Deutscher Akademischer Austauschdienst DAAD.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Holzgrabe, U. & Heller, E. (2003). Tetrahedron, 59, 781–787. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohr, M., Heller, E., Ataie, A., Mohr, K. & Holzgrabe, U. (2004). J. Med. Chem. 47, 3324–3327. Web of Science CrossRef PubMed CAS Google Scholar
Mohr, K., Tränkle, C., Kostenis, E., Barocelli, E., De Amici, M. & Holzgrabe, U. (2010). Br. J. Pharmacol. 159, 997–1008. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J.-C., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300–4315. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.