organic compounds
2-(3-Methylphenyl)-1,2-benzoselenazol-3(2H)-one
aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bScientific Instrument Center, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: gzq@sxu.edu.cn
In the title ebselen derivative, C14H11NOSe, the nine-membered benzisoselenazolyl ring system is approximately planar (r.m.s. deviation = 0.021 Å). The dihedral angle between its mean plane and that of the 3-methylphenyl ring is 5.37 (11)°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se—N = 1.889 (2) Å, Se—Car = 1.882 (3) Å and N—Se—Car = 83.30 (10)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds and short intermolecular Se⋯O contacts of 2.6917 (19) Å, forming chains along the c-axis direction. Neighbouring molecules are linked by offset π–π interactions [intercentroid distance = 3.535 (2) Å]. The chains are also linked by C—H⋯π interactions, forming a three-dimensional structure.
Keywords: crystal structure; ebselen analogue; benzisoselenazole; short Se⋯O contact; C—H⋯O hydrogen bonds; offset π–π interactions.
CCDC reference: 666227
Structure description
Ebselen (systematic name: 2-phenyl-1,2-benzoselenazol-3-one) is a synthetic organoselenium drug which has been reported to exhibit anti-inflammatory, anti-oxidant and cytoprotective activity (Mugesh & Singh, 2000; Mugesh et al., 2001a,b). We report herein on the synthesis and of the 3-methylphenyl derivative of ebselen.
The molecular structure of the title compound is shown in Fig. 1. The nine-membered benzisoselenazolyl group is roughly planar (r.m.s. deviation = 0.021 Å). The dihedral angle between its mean plane and the 3-methylphenyl ring is 5.37 (11)°. This value is much smaller than that reported for N-(2-methylphenyl)-1,2-benzoselenazol-3(2H)-one (Zhu et al., 2013) in which the 2-methylphenyl ring is inclined to the benzisoselenazolyl ring system by 78.15 (11)°. In two polymorphs of ebselen, the corresponding dihedral angle is 24.24 (8)° for the monoclinic P21/c polymorph and 33.36 (12)° for the orthorhombic Pbca polymorph (Thomas et al., 2015). In the orthorhombic Pna21 polymorph of m-ebselenol (Thomas et al., 2015), the corresponding dihedral angle is 35.17 (12)°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se1—N1 = 1.889 (2) Å, Se1—C14 = 1.882 (3) Å, N1—Se1—C14 = 83.30 (10)°. These values are similar to those reported for the above mentioned compounds.
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, and short Se1⋯Oi contacts of 2.6917 (19) Å [symmetry code: (i) x, −y + , z − ], forming chains along the c-axis direction (Table 1 and Fig. 2). Neighbouring molecules are linked by offset π–π interactions [Cg2⋯Cg4i = 3.535 (2) Å, Cg2 and Cg4 are the centroids of rings C1–C6 and Se1/N1/C8–C14, respectively, α = 5.37 (11)°, interplanar distances = 3.499 (1) and 3.466 (1) Å, slippage = 0.693 Å; symmetry code: (i) x, y − 1, z]. The chains are also linked by C—H⋯π interactions, forming a three-dimensional structure (Table 1 and Fig. 2).
The Se⋯O distance in N-(2-methylphenyl)-1,2-benzoselenazol-3(2H)-one (Zhu et al., 2013) is 2.733 (3) Å. In the two polymorphs of ebselen mentioned above the Se⋯O contacts are slightly shorter at 2.533 (2) and 2.522 (2) Å.
Synthesis and crystallization
The title compound was prepared following a modified literature procedure (Zhu et al., 2013). A solution of 2-(chloroseleno)benzoyl chloride (0.76 g, 3 mmol) in dry acetonitrile (20 ml) was added dropwise to a solution of 3-methylaniline (0.322 g, 3 mmol) and triethylamine in dry acetonitrile (20 ml) at room temperature. The reaction mixture was stirred at room temperature for about 5 h and the solvent was evaporated in vacuo. The precipitate was recrystallized to obtain colourless block-like crystals (yield 55%, m.p. 426–427 K).
1H NMR (CDCl3): δ 2.38 (s, 3 H, CH3), 7.08–7.10 (d, 3J = 7.3 Hz, 1 H, H—C11), 7.27–7.32 (t, 3J = 8.3 Hz, 1 H, H—C10), 7.38–7.45 (m, 3 H, H—C2, C9, C13), 7.59–7.70 (m, 2 H, H—C3, C4)), 8.10–8.12 (d, 3J = 7.8 Hz, 1 H, H—C5); 13C NMR: δ 24.1 (CH3), 125.3 (C9), 126.6 (C13), 128.8 (C11), 129.2 (C10), 130.4 (C2), 131.6 (C4), 131.8 (C5), 132.0 (C3), 135.1 (C1), 140.6 (C12), 141.6 (C6), 142.0 (C8), 168.5 (C=O); 77Se NMR: δ 961. Analysis calculated for C14H11NOSe: C, 58.34; H, 3.85; N, 4.86%. Found: C, 58.20; H, 3.90; N, 4.77%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 666227
https://doi.org/10.1107/S2414314617005326/su4145sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314617005326/su4145Isup2.cml
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H11NOSe | F(000) = 576 |
Mr = 288.20 | Dx = 1.662 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.561 (4) Å | Cell parameters from 2393 reflections |
b = 5.9415 (16) Å | θ = 2.6–27.1° |
c = 12.471 (3) Å | µ = 3.24 mm−1 |
β = 92.799 (3)° | T = 293 K |
V = 1151.6 (5) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 1728 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | θmax = 25.0°, θmin = 2.6° |
Tmin = 0.563, Tmax = 0.737 | h = −18→16 |
4482 measured reflections | k = −6→7 |
2015 independent reflections | l = −9→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1339P] where P = (Fo2 + 2Fc2)/3 |
2015 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.77312 (2) | 0.16715 (4) | 0.66672 (2) | 0.03852 (12) | |
N1 | 0.75687 (14) | 0.0480 (3) | 0.80472 (15) | 0.0362 (5) | |
O1 | 0.79688 (14) | 0.1110 (3) | 0.98233 (14) | 0.0527 (5) | |
C1 | 0.70239 (17) | −0.1434 (4) | 0.8143 (2) | 0.0350 (6) | |
C2 | 0.69338 (19) | −0.2532 (5) | 0.9106 (2) | 0.0488 (7) | |
H2 | 0.7217 | −0.2012 | 0.9731 | 0.059* | |
C3 | 0.6413 (2) | −0.4427 (5) | 0.9123 (3) | 0.0610 (9) | |
H3 | 0.6353 | −0.5184 | 0.9768 | 0.073* | |
C4 | 0.5983 (2) | −0.5212 (5) | 0.8206 (3) | 0.0554 (8) | |
H4 | 0.5637 | −0.6484 | 0.8240 | 0.066* | |
C5 | 0.60614 (19) | −0.4142 (5) | 0.7252 (2) | 0.0473 (7) | |
C6 | 0.65794 (18) | −0.2238 (5) | 0.7229 (2) | 0.0437 (7) | |
H6 | 0.6630 | −0.1480 | 0.6583 | 0.052* | |
C7 | 0.5604 (2) | −0.4993 (6) | 0.6237 (2) | 0.0652 (9) | |
H7A | 0.5975 | −0.6005 | 0.5876 | 0.098* | |
H7B | 0.5457 | −0.3745 | 0.5775 | 0.098* | |
H7C | 0.5090 | −0.5772 | 0.6414 | 0.098* | |
C8 | 0.79923 (18) | 0.1616 (4) | 0.8870 (2) | 0.0378 (6) | |
C9 | 0.84756 (17) | 0.3536 (4) | 0.8470 (2) | 0.0393 (6) | |
C10 | 0.89553 (18) | 0.5007 (5) | 0.9122 (2) | 0.0458 (7) | |
H10 | 0.9003 | 0.4780 | 0.9861 | 0.055* | |
C11 | 0.93588 (19) | 0.6799 (4) | 0.8671 (2) | 0.0491 (7) | |
H11 | 0.9684 | 0.7785 | 0.9105 | 0.059* | |
C12 | 0.92841 (18) | 0.7147 (5) | 0.7574 (2) | 0.0480 (7) | |
H12 | 0.9556 | 0.8380 | 0.7280 | 0.058* | |
C13 | 0.88175 (18) | 0.5709 (5) | 0.6909 (2) | 0.0432 (6) | |
H13 | 0.8772 | 0.5948 | 0.6171 | 0.052* | |
C14 | 0.84146 (16) | 0.3887 (4) | 0.7370 (2) | 0.0359 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0507 (2) | 0.03956 (18) | 0.02478 (17) | 0.00204 (11) | −0.00299 (12) | −0.00034 (10) |
N1 | 0.0476 (12) | 0.0378 (12) | 0.0228 (11) | 0.0000 (10) | −0.0027 (9) | −0.0011 (9) |
O1 | 0.0817 (15) | 0.0527 (11) | 0.0234 (10) | −0.0107 (11) | −0.0015 (9) | −0.0023 (8) |
C1 | 0.0394 (14) | 0.0344 (14) | 0.0312 (13) | 0.0040 (11) | 0.0013 (11) | −0.0033 (10) |
C2 | 0.0575 (19) | 0.0522 (16) | 0.0360 (16) | −0.0063 (15) | −0.0042 (13) | 0.0012 (14) |
C3 | 0.075 (2) | 0.0583 (19) | 0.0489 (19) | −0.0152 (17) | −0.0015 (16) | 0.0136 (15) |
C4 | 0.0557 (19) | 0.0503 (17) | 0.060 (2) | −0.0135 (15) | −0.0011 (15) | 0.0002 (15) |
C5 | 0.0476 (17) | 0.0471 (15) | 0.0464 (18) | 0.0019 (13) | −0.0051 (13) | −0.0098 (13) |
C6 | 0.0498 (17) | 0.0475 (15) | 0.0334 (15) | −0.0029 (13) | −0.0025 (12) | −0.0023 (12) |
C7 | 0.064 (2) | 0.069 (2) | 0.061 (2) | −0.0125 (17) | −0.0090 (16) | −0.0188 (17) |
C8 | 0.0503 (16) | 0.0372 (14) | 0.0255 (13) | 0.0043 (11) | −0.0038 (11) | −0.0027 (11) |
C9 | 0.0407 (15) | 0.0417 (15) | 0.0355 (15) | 0.0045 (12) | 0.0009 (11) | −0.0040 (11) |
C10 | 0.0508 (16) | 0.0510 (16) | 0.0352 (15) | −0.0011 (14) | −0.0023 (12) | −0.0053 (13) |
C11 | 0.0471 (17) | 0.0473 (16) | 0.0524 (19) | −0.0062 (13) | −0.0032 (14) | −0.0103 (13) |
C12 | 0.0440 (16) | 0.0411 (15) | 0.059 (2) | 0.0015 (13) | 0.0015 (14) | 0.0054 (13) |
C13 | 0.0459 (16) | 0.0468 (15) | 0.0367 (15) | 0.0030 (13) | 0.0007 (12) | 0.0068 (12) |
C14 | 0.0383 (14) | 0.0378 (13) | 0.0313 (14) | 0.0072 (11) | −0.0028 (11) | −0.0027 (11) |
Se1—C14 | 1.882 (3) | C6—H6 | 0.9300 |
Se1—N1 | 1.889 (2) | C7—H7A | 0.9600 |
N1—C8 | 1.370 (3) | C7—H7B | 0.9600 |
N1—C1 | 1.427 (3) | C7—H7C | 0.9600 |
O1—C8 | 1.229 (3) | C8—C9 | 1.467 (4) |
C1—C2 | 1.379 (4) | C9—C14 | 1.386 (4) |
C1—C6 | 1.389 (4) | C9—C10 | 1.387 (4) |
C2—C3 | 1.388 (4) | C10—C11 | 1.370 (4) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.377 (4) | C11—C12 | 1.383 (4) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.360 (4) | C12—C13 | 1.373 (4) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.390 (4) | C13—C14 | 1.390 (4) |
C5—C7 | 1.508 (4) | C13—H13 | 0.9300 |
C14—Se1—N1 | 86.30 (10) | C5—C7—H7C | 109.5 |
C8—N1—C1 | 126.6 (2) | H7A—C7—H7C | 109.5 |
C8—N1—Se1 | 114.61 (17) | H7B—C7—H7C | 109.5 |
C1—N1—Se1 | 118.78 (15) | O1—C8—N1 | 124.6 (2) |
C2—C1—C6 | 118.9 (3) | O1—C8—C9 | 123.9 (2) |
C2—C1—N1 | 122.4 (2) | N1—C8—C9 | 111.4 (2) |
C6—C1—N1 | 118.7 (2) | C14—C9—C10 | 119.6 (2) |
C1—C2—C3 | 118.8 (3) | C14—C9—C8 | 116.2 (2) |
C1—C2—H2 | 120.6 | C10—C9—C8 | 124.2 (2) |
C3—C2—H2 | 120.6 | C11—C10—C9 | 119.5 (3) |
C4—C3—C2 | 121.5 (3) | C11—C10—H10 | 120.2 |
C4—C3—H3 | 119.3 | C9—C10—H10 | 120.2 |
C2—C3—H3 | 119.3 | C10—C11—C12 | 120.3 (3) |
C5—C4—C3 | 120.5 (3) | C10—C11—H11 | 119.9 |
C5—C4—H4 | 119.7 | C12—C11—H11 | 119.9 |
C3—C4—H4 | 119.7 | C13—C12—C11 | 121.4 (3) |
C4—C5—C6 | 118.3 (3) | C13—C12—H12 | 119.3 |
C4—C5—C7 | 121.3 (3) | C11—C12—H12 | 119.3 |
C6—C5—C7 | 120.4 (3) | C12—C13—C14 | 118.1 (3) |
C1—C6—C5 | 122.0 (3) | C12—C13—H13 | 121.0 |
C1—C6—H6 | 119.0 | C14—C13—H13 | 121.0 |
C5—C6—H6 | 119.0 | C9—C14—C13 | 121.1 (2) |
C5—C7—H7A | 109.5 | C9—C14—Se1 | 111.45 (19) |
C5—C7—H7B | 109.5 | C13—C14—Se1 | 127.5 (2) |
H7A—C7—H7B | 109.5 |
Cg2 and Cg3 are the centroids of rings C1–C6 and C9–C14, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1i | 0.93 | 2.38 | 3.057 (3) | 129 |
C7—H7C···Cg2ii | 0.96 | 2.97 | 3.926 (4) | 176 |
C12—H12···Cg3iii | 0.93 | 2.74 | 3.535 (3) | 144 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2. |
Funding information
Funding for this research was provided by: Special Fund for Agro-scientific Research in the Public Interest (award No. 201303106).
References
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mugesh, G., du Mont, W. W. & Sies, H. (2001a). Chem. Rev. 101, 2125–2179. CrossRef PubMed CAS Google Scholar
Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S. & Butcher, R. J. (2001b). J. Am. Chem. Soc. 123, 839–850. CSD CrossRef PubMed CAS Google Scholar
Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, S. P., Satheeshkumar, K., Mugesh, G. & Guru Row, T. N. (2015). Chem. Eur. J. 21, 6793–6800. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, X., Xu, Y., Han, H., Guo, Z. & Wei, X. (2013). Acta Cryst. E69, o1538. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.