organic compounds
2-{(E)-[(4-Anilinophenyl)imino]methyl}-4-[(E)-(4-methoxyphenyl)diazenyl]phenol
aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: ekaterina_goleva@list.ru
In the title Schiff base compound, C26H22N4O2, the hydroxy group forms a intramolecular hydrogen bond to the imine N atom and generates an S(6) ring motif. The conformation about the C=N and N=N bonds is E. The 4-methoxybenzene ring and the p-phenylenediamine ring are inclined to the phenol ring by 11.61 (17) and 46.04 (17)°, respectively. The terminal N-phenyl ring is inclined to the p-phenylenediamine ring by 50.72 (17)°. In the crystal, adjacent molecules are linked by C—H⋯O hydrogen bonds, involving the p-phenylenediamine ring and the phenol ring, forming chains along [001]. The chains are linked by a number of C—H⋯π interactions, forming slabs propagating parallel to (100).
Keywords: crystal structure; azo compounds; diazenyl; phenylamino; imino; Schiff base; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1543490
Structure description
; Ispir, 2009). The well known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the interest of many investigators (Tunçel & Serin, 2006). The versatile applications of in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991). The conversion from the trans to the cis form in can lead to Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990), and for potential applications in molecular electronic devices (Martin et al., 1995). often exhibit various biological activities including antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). 2-Hydroxy salicylaldimine compounds can undergo enol–imine/keto–amine by H-atom transfer from the hydroxyl oxygen to the imine nitrogen, probably via intramolecular hydrogen bonding (Khedr et al., 2005). The present work is part of an ongoing structural study of and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Hussain, 2014; Faizi et al., 2016). We report herein, on the synthesis and of a new Schiff base compound.
have received much attention in fundamental and applied chemistry (Nishihara, 2004There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported (Khandar & Rezvani, 1998; Cariati et al. 2004). One very similar compound, used as a chemosensor for the detection of fluoride and cyanide ions, has been described (Udhayakumari et al. 2015), but no has been reported. Similar azo Schiff base compounds have been synthesized and used for second-order non-linearity (Jalali-Heravi et al. 1999), and for non-linear optical properties (Qian, et al. 2004). Azo-azomethine compounds have been synthesized and used as fluorescent dyes and for the synthesis of CoII and CuII complexes (Kurtoglu et al. 2014).
The molecular structure of the title compound is illustrated in Fig. 1. The conformation about the azomethine N2=C13 bond [1.286 (4) Å] is E, and the C10—N2—C13—C14 torsion angle is 170.3 (3). The molecule is non-planar, with ring B (C7–C12) being inclined to rings A (C1–C6), C (C14–C19) and D (C20–C25) by 50.72 (17), 46.04 (17) and 52.12 (17)°, respectively, while the dihedral angles A/C, A/D and C/D are 8.15 (17), 3.56 (17) and 11.61 (17)°, respectively. The N3—C16 and N4—C20 bond lengths of 1.426 (5) and 1.424 (5) Å, respectively, indicate single-bond character, whereas the N3=N4 bond length of 1.252 (4) Å confirms the double-bond character, with an E conformation about the N3=N4 bond.
Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in ). It exhibits an intramolecular O— H⋯N hydrogen bond, which generates an S(6) ring motif (Fig. 1 and Table 1). This intramolecular O—H⋯N hydrogen bond has been detected previously in salicylaldehyde derivatives (Faizi et al., 2017). The C19—O1 [1.347 (4) Å] bond length is in agreement with the values reported for similar compounds, viz. (E)-2-{[(4-anilinophenyl)- imino]methyl}phenol (Faizi et al., 2015).
O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1In the crystal, molecules are connected by C—H⋯O hydrogen bonds, generating chains extending along the c-axis direction; Table 1 and Fig. 2. The chains are linked via a number of C—H⋯π interactions, forming slabs lying parallel to the bc plane; see Table 1 and Fig. 3.
Synthesis and crystallization
Synthesis of 5-(4-methoxyphenylazo)salicyaldehyde (L): To a solution of p-methoxyaniline in water (5 ml, 0.05 mol) 6 ml of 37% aq. HCl was slowly added at 0–5° C with stirring. 20 ml of 20% aq. NaNO2 solution was added to the mixture and the resulting solution was stirred for 1 h, which gave a bright-yellow solution. Salicylaldehyde (5 ml, 0.05 mol) was dissolved in a solution comprising 18 g Na2CO3 and 150 ml H2O and the resulting solution was added dropwise to the bright-yellow solution over a period of 1 h. After stirring for 4 h, the reaction mixture was neutralized with HCl, yielding a brown crude solid that was filtered and recrystallized from ethanol to afford a pure yellow product.
Synthesis of the title compound: 100 mg (1 mmol) of N-phenyl-p-phenylenediamine were dissolved in 10 ml of absolute ethanol. To this solution, 52 mg (1 mmol) of (L) in 5 ml of absolute ethanol was added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was refluxed for a further 2 h. The resulting light-brown precipitate was recovered by filtration, washed several times with small portions of EtOH and then with diethyl ether to give the title compound (yield 120 mg, 86%). Yellow needle-like crystals of the title compound were obtained within 3 d by slow evaporation of a solution in MeOH.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1543490
https://doi.org/10.1107/S241431461700548X/su4134sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700548X/su4134Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461700548X/su4134Isup3.cml
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C26H22N4O2 | F(000) = 888 |
Mr = 422.47 | Dx = 1.361 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 47.514 (8) Å | Cell parameters from 3571 reflections |
b = 7.1015 (11) Å | θ = 2.9–24.3° |
c = 6.1289 (10) Å | µ = 0.09 mm−1 |
β = 96.037 (9)° | T = 100 K |
V = 2056.6 (6) Å3 | Needle, yellow |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 3631 independent reflections |
Radiation source: fine-focus sealed tube | 2747 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
/w–scans | θmax = 25.1°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −56→56 |
Tmin = 0.953, Tmax = 0.981 | k = −8→8 |
11961 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0395P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3631 reflections | Δρmax = 0.20 e Å−3 |
292 parameters | Δρmin = −0.21 e Å−3 |
2 restraints | Extinction correction: (SHELXL2016; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0034 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.28294 (6) | 0.2453 (3) | 0.6349 (4) | 0.0227 (7) | |
O1 | 0.50798 (5) | 0.1833 (4) | 0.0205 (4) | 0.0264 (7) | |
H1B | 0.522153 | 0.205011 | 0.110889 | 0.040* | |
N2 | 0.53540 (7) | 0.2769 (4) | 0.3861 (5) | 0.0198 (8) | |
N3 | 0.40918 (6) | 0.2985 (4) | 0.4118 (5) | 0.0212 (8) | |
N4 | 0.38790 (6) | 0.2203 (4) | 0.3130 (5) | 0.0218 (8) | |
N1 | 0.63876 (6) | 0.2375 (4) | 0.9183 (6) | 0.0233 (8) | |
H1A | 0.637112 | 0.227085 | 1.059477 | 0.028* | |
C23 | 0.30982 (8) | 0.2495 (5) | 0.5727 (6) | 0.0189 (9) | |
C10 | 0.56120 (8) | 0.2689 (5) | 0.5255 (6) | 0.0174 (9) | |
C14 | 0.48504 (8) | 0.2851 (5) | 0.3316 (7) | 0.0177 (9) | |
C24 | 0.31294 (8) | 0.1601 (5) | 0.3748 (6) | 0.0178 (9) | |
H24 | 0.297072 | 0.102594 | 0.293763 | 0.021* | |
C1 | 0.66649 (8) | 0.2465 (5) | 0.8587 (7) | 0.0202 (10) | |
C16 | 0.43388 (8) | 0.2748 (5) | 0.3011 (7) | 0.0194 (9) | |
C22 | 0.33303 (7) | 0.3314 (5) | 0.6933 (6) | 0.0189 (9) | |
H22 | 0.330948 | 0.391784 | 0.828941 | 0.023* | |
C8 | 0.58894 (8) | 0.1733 (5) | 0.8577 (7) | 0.0204 (9) | |
H8 | 0.590094 | 0.115840 | 0.998308 | 0.025* | |
C18 | 0.45831 (8) | 0.1758 (5) | −0.0035 (7) | 0.0198 (10) | |
H18 | 0.457845 | 0.129159 | −0.149129 | 0.024* | |
C25 | 0.33910 (8) | 0.1549 (5) | 0.2963 (6) | 0.0202 (10) | |
H25 | 0.341187 | 0.094179 | 0.160816 | 0.024* | |
C12 | 0.61148 (8) | 0.3222 (5) | 0.5708 (6) | 0.0192 (9) | |
H12 | 0.628009 | 0.369191 | 0.514943 | 0.023* | |
C11 | 0.58566 (7) | 0.3329 (5) | 0.4447 (6) | 0.0199 (9) | |
H11 | 0.584655 | 0.384689 | 0.301109 | 0.024* | |
C19 | 0.48417 (7) | 0.2153 (5) | 0.1163 (6) | 0.0184 (10) | |
C2 | 0.67385 (8) | 0.1688 (5) | 0.6654 (6) | 0.0203 (9) | |
H2 | 0.659660 | 0.114073 | 0.564225 | 0.024* | |
C7 | 0.61336 (8) | 0.2431 (5) | 0.7787 (6) | 0.0188 (9) | |
C9 | 0.56306 (8) | 0.1873 (5) | 0.7325 (7) | 0.0206 (9) | |
H9 | 0.546485 | 0.140993 | 0.788315 | 0.025* | |
C21 | 0.35935 (8) | 0.3240 (5) | 0.6135 (7) | 0.0217 (10) | |
H21 | 0.375353 | 0.378276 | 0.696228 | 0.026* | |
C20 | 0.36240 (8) | 0.2382 (5) | 0.4144 (6) | 0.0183 (10) | |
C3 | 0.70172 (8) | 0.1701 (5) | 0.6184 (7) | 0.0240 (10) | |
H3 | 0.706527 | 0.117276 | 0.484792 | 0.029* | |
C13 | 0.51190 (8) | 0.3059 (5) | 0.4672 (7) | 0.0180 (9) | |
H13 | 0.512070 | 0.341299 | 0.616818 | 0.022* | |
C6 | 0.68741 (8) | 0.3266 (5) | 1.0056 (6) | 0.0231 (10) | |
H6 | 0.682584 | 0.381772 | 1.137828 | 0.028* | |
C15 | 0.45950 (7) | 0.3168 (5) | 0.4183 (6) | 0.0175 (9) | |
H15 | 0.459738 | 0.368589 | 0.561428 | 0.021* | |
C17 | 0.43349 (9) | 0.2041 (5) | 0.0877 (7) | 0.0210 (10) | |
H17 | 0.415930 | 0.175520 | 0.005503 | 0.025* | |
C26 | 0.27780 (9) | 0.3453 (5) | 0.8274 (7) | 0.0298 (10) | |
H26A | 0.289393 | 0.291821 | 0.954070 | 0.045* | |
H26B | 0.257743 | 0.334788 | 0.849766 | 0.045* | |
H26C | 0.282725 | 0.478167 | 0.811095 | 0.045* | |
C5 | 0.71541 (8) | 0.3256 (5) | 0.9584 (7) | 0.0252 (10) | |
H5 | 0.729705 | 0.378741 | 1.060064 | 0.030* | |
C4 | 0.72263 (8) | 0.2483 (5) | 0.7655 (7) | 0.0260 (10) | |
H4 | 0.741771 | 0.248696 | 0.733733 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0167 (15) | 0.0279 (16) | 0.0236 (17) | −0.0008 (12) | 0.0037 (12) | −0.0043 (13) |
O1 | 0.0178 (16) | 0.0369 (17) | 0.0247 (17) | −0.0002 (13) | 0.0039 (13) | −0.0030 (13) |
N2 | 0.0162 (19) | 0.0168 (19) | 0.027 (2) | 0.0002 (14) | 0.0037 (16) | −0.0008 (14) |
N3 | 0.0147 (19) | 0.0253 (19) | 0.024 (2) | 0.0007 (14) | 0.0020 (16) | 0.0010 (14) |
N4 | 0.016 (2) | 0.0204 (18) | 0.029 (2) | 0.0003 (14) | 0.0028 (16) | 0.0015 (15) |
N1 | 0.0173 (19) | 0.034 (2) | 0.018 (2) | 0.0021 (14) | 0.0000 (14) | 0.0018 (15) |
C23 | 0.015 (2) | 0.017 (2) | 0.025 (3) | 0.0003 (16) | 0.0027 (18) | 0.0072 (18) |
C10 | 0.017 (2) | 0.018 (2) | 0.018 (2) | 0.0013 (17) | 0.0019 (17) | −0.0023 (17) |
C14 | 0.016 (2) | 0.015 (2) | 0.022 (3) | −0.0010 (16) | 0.0020 (17) | 0.0032 (17) |
C24 | 0.017 (2) | 0.018 (2) | 0.018 (2) | −0.0024 (16) | −0.0021 (17) | −0.0002 (17) |
C1 | 0.018 (2) | 0.015 (2) | 0.027 (3) | −0.0002 (17) | −0.0003 (19) | 0.0050 (18) |
C16 | 0.018 (2) | 0.017 (2) | 0.023 (2) | 0.0019 (17) | 0.0027 (18) | 0.0045 (18) |
C22 | 0.020 (2) | 0.021 (2) | 0.016 (2) | 0.0012 (17) | 0.0021 (18) | 0.0003 (17) |
C8 | 0.023 (2) | 0.021 (2) | 0.017 (2) | 0.0011 (17) | 0.0020 (18) | 0.0018 (18) |
C18 | 0.023 (2) | 0.019 (2) | 0.017 (2) | 0.0013 (17) | 0.0023 (19) | 0.0009 (17) |
C25 | 0.024 (2) | 0.016 (2) | 0.021 (2) | 0.0025 (16) | 0.0027 (19) | 0.0005 (17) |
C12 | 0.017 (2) | 0.018 (2) | 0.024 (3) | 0.0010 (16) | 0.0051 (17) | −0.0010 (18) |
C11 | 0.022 (2) | 0.018 (2) | 0.021 (2) | 0.0016 (17) | 0.0042 (19) | 0.0009 (17) |
C19 | 0.016 (2) | 0.021 (2) | 0.019 (2) | 0.0012 (17) | 0.0048 (18) | 0.0025 (17) |
C2 | 0.021 (2) | 0.018 (2) | 0.021 (3) | 0.0006 (17) | −0.0023 (18) | −0.0014 (17) |
C7 | 0.016 (2) | 0.018 (2) | 0.022 (2) | 0.0002 (17) | 0.0023 (18) | −0.0044 (17) |
C9 | 0.016 (2) | 0.020 (2) | 0.027 (3) | −0.0002 (16) | 0.0077 (18) | −0.0040 (17) |
C21 | 0.016 (2) | 0.017 (2) | 0.031 (3) | −0.0001 (16) | −0.0037 (18) | 0.0009 (19) |
C20 | 0.014 (2) | 0.019 (2) | 0.023 (3) | 0.0013 (16) | 0.0024 (18) | 0.0000 (17) |
C3 | 0.024 (2) | 0.022 (2) | 0.026 (3) | 0.0062 (17) | 0.0027 (19) | 0.0012 (18) |
C13 | 0.021 (2) | 0.019 (2) | 0.014 (2) | 0.0004 (16) | 0.0018 (17) | 0.0015 (16) |
C6 | 0.025 (3) | 0.021 (2) | 0.024 (3) | 0.0073 (17) | 0.0001 (19) | −0.0008 (17) |
C15 | 0.020 (2) | 0.019 (2) | 0.013 (2) | 0.0000 (17) | −0.0008 (17) | −0.0013 (16) |
C17 | 0.020 (2) | 0.021 (2) | 0.022 (3) | −0.0017 (17) | 0.0001 (18) | 0.0027 (18) |
C26 | 0.020 (2) | 0.041 (3) | 0.029 (3) | 0.0015 (18) | 0.0068 (18) | −0.006 (2) |
C5 | 0.019 (2) | 0.018 (2) | 0.037 (3) | −0.0011 (16) | −0.003 (2) | 0.001 (2) |
C4 | 0.018 (2) | 0.022 (2) | 0.037 (3) | 0.0027 (17) | 0.000 (2) | 0.0044 (19) |
O2—C23 | 1.371 (4) | C8—H8 | 0.9500 |
O2—C26 | 1.420 (5) | C18—C17 | 1.372 (5) |
O1—C19 | 1.347 (4) | C18—C19 | 1.392 (5) |
O1—H1B | 0.8400 | C18—H18 | 0.9500 |
N2—C13 | 1.286 (4) | C25—C20 | 1.390 (5) |
N2—C10 | 1.420 (4) | C25—H25 | 0.9500 |
N3—N4 | 1.252 (4) | C12—C11 | 1.382 (5) |
N3—C16 | 1.426 (5) | C12—C7 | 1.386 (6) |
N4—C20 | 1.424 (5) | C12—H12 | 0.9500 |
N1—C7 | 1.405 (5) | C11—H11 | 0.9500 |
N1—C1 | 1.405 (5) | C2—C3 | 1.385 (5) |
N1—H1A | 0.8800 | C2—H2 | 0.9500 |
C23—C22 | 1.389 (5) | C9—H9 | 0.9500 |
C23—C24 | 1.391 (5) | C21—C20 | 1.385 (6) |
C10—C11 | 1.387 (5) | C21—H21 | 0.9500 |
C10—C9 | 1.389 (5) | C3—C4 | 1.385 (6) |
C14—C15 | 1.393 (5) | C3—H3 | 0.9500 |
C14—C19 | 1.406 (6) | C13—H13 | 0.9500 |
C14—C13 | 1.455 (5) | C6—C5 | 1.391 (5) |
C24—C25 | 1.380 (5) | C6—H6 | 0.9500 |
C24—H24 | 0.9500 | C15—H15 | 0.9500 |
C1—C2 | 1.385 (5) | C17—H17 | 0.9500 |
C1—C6 | 1.390 (5) | C26—H26A | 0.9800 |
C16—C15 | 1.380 (5) | C26—H26B | 0.9800 |
C16—C17 | 1.399 (6) | C26—H26C | 0.9800 |
C22—C21 | 1.391 (4) | C5—C4 | 1.379 (6) |
C22—H22 | 0.9500 | C5—H5 | 0.9500 |
C8—C9 | 1.383 (5) | C4—H4 | 0.9500 |
C8—C7 | 1.394 (5) | ||
C23—O2—C26 | 117.8 (3) | O1—C19—C14 | 121.7 (3) |
C19—O1—H1B | 109.5 | C18—C19—C14 | 120.2 (3) |
C13—N2—C10 | 120.3 (3) | C1—C2—C3 | 120.6 (4) |
N4—N3—C16 | 112.4 (3) | C1—C2—H2 | 119.7 |
N3—N4—C20 | 115.5 (3) | C3—C2—H2 | 119.7 |
C7—N1—C1 | 127.5 (4) | C12—C7—C8 | 119.2 (4) |
C7—N1—H1A | 116.2 | C12—C7—N1 | 122.7 (4) |
C1—N1—H1A | 116.2 | C8—C7—N1 | 118.1 (4) |
O2—C23—C22 | 124.9 (4) | C8—C9—C10 | 120.3 (4) |
O2—C23—C24 | 114.9 (3) | C8—C9—H9 | 119.9 |
C22—C23—C24 | 120.3 (4) | C10—C9—H9 | 119.9 |
C11—C10—C9 | 119.2 (4) | C20—C21—C22 | 120.5 (4) |
C11—C10—N2 | 118.4 (3) | C20—C21—H21 | 119.7 |
C9—C10—N2 | 122.3 (3) | C22—C21—H21 | 119.7 |
C15—C14—C19 | 118.3 (4) | C21—C20—C25 | 119.6 (4) |
C15—C14—C13 | 120.8 (4) | C21—C20—N4 | 126.6 (3) |
C19—C14—C13 | 120.6 (4) | C25—C20—N4 | 113.7 (3) |
C25—C24—C23 | 119.9 (3) | C2—C3—C4 | 120.2 (4) |
C25—C24—H24 | 120.1 | C2—C3—H3 | 119.9 |
C23—C24—H24 | 120.1 | C4—C3—H3 | 119.9 |
C2—C1—C6 | 119.3 (4) | N2—C13—C14 | 120.5 (4) |
C2—C1—N1 | 122.2 (4) | N2—C13—H13 | 119.7 |
C6—C1—N1 | 118.5 (4) | C14—C13—H13 | 119.7 |
C15—C16—C17 | 119.3 (4) | C5—C6—C1 | 119.9 (4) |
C15—C16—N3 | 116.9 (4) | C5—C6—H6 | 120.1 |
C17—C16—N3 | 123.8 (3) | C1—C6—H6 | 120.1 |
C23—C22—C21 | 119.4 (4) | C16—C15—C14 | 121.5 (4) |
C23—C22—H22 | 120.3 | C16—C15—H15 | 119.3 |
C21—C22—H22 | 120.3 | C14—C15—H15 | 119.3 |
C9—C8—C7 | 120.4 (4) | C18—C17—C16 | 120.4 (4) |
C9—C8—H8 | 119.8 | C18—C17—H17 | 119.8 |
C7—C8—H8 | 119.8 | C16—C17—H17 | 119.8 |
C17—C18—C19 | 120.3 (4) | O2—C26—H26A | 109.5 |
C17—C18—H18 | 119.9 | O2—C26—H26B | 109.5 |
C19—C18—H18 | 119.9 | H26A—C26—H26B | 109.5 |
C24—C25—C20 | 120.3 (4) | O2—C26—H26C | 109.5 |
C24—C25—H25 | 119.8 | H26A—C26—H26C | 109.5 |
C20—C25—H25 | 119.8 | H26B—C26—H26C | 109.5 |
C11—C12—C7 | 120.3 (4) | C4—C5—C6 | 120.6 (4) |
C11—C12—H12 | 119.9 | C4—C5—H5 | 119.7 |
C7—C12—H12 | 119.9 | C6—C5—H5 | 119.7 |
C12—C11—C10 | 120.6 (4) | C5—C4—C3 | 119.5 (4) |
C12—C11—H11 | 119.7 | C5—C4—H4 | 120.3 |
C10—C11—H11 | 119.7 | C3—C4—H4 | 120.3 |
O1—C19—C18 | 118.1 (4) | ||
C16—N3—N4—C20 | 180.0 (3) | C1—N1—C7—C12 | −23.0 (6) |
C26—O2—C23—C22 | 5.6 (5) | C1—N1—C7—C8 | 159.8 (3) |
C26—O2—C23—C24 | −175.7 (3) | C7—C8—C9—C10 | 0.8 (6) |
C13—N2—C10—C11 | −147.4 (3) | C11—C10—C9—C8 | 1.1 (6) |
C13—N2—C10—C9 | 37.3 (6) | N2—C10—C9—C8 | 176.4 (4) |
O2—C23—C24—C25 | −179.8 (3) | C23—C22—C21—C20 | 0.8 (5) |
C22—C23—C24—C25 | −0.9 (6) | C22—C21—C20—C25 | −1.6 (6) |
C7—N1—C1—C2 | −34.1 (6) | C22—C21—C20—N4 | 180.0 (3) |
C7—N1—C1—C6 | 149.8 (4) | C24—C25—C20—C21 | 1.0 (5) |
N4—N3—C16—C15 | −165.6 (3) | C24—C25—C20—N4 | 179.7 (3) |
N4—N3—C16—C17 | 11.3 (5) | N3—N4—C20—C21 | −3.5 (5) |
O2—C23—C22—C21 | 179.1 (3) | N3—N4—C20—C25 | 178.0 (3) |
C24—C23—C22—C21 | 0.4 (5) | C1—C2—C3—C4 | 0.5 (5) |
C23—C24—C25—C20 | 0.2 (5) | C10—N2—C13—C14 | −170.3 (3) |
C7—C12—C11—C10 | 1.5 (5) | C15—C14—C13—N2 | −179.8 (3) |
C9—C10—C11—C12 | −2.3 (5) | C19—C14—C13—N2 | 6.2 (6) |
N2—C10—C11—C12 | −177.7 (3) | C2—C1—C6—C5 | −0.8 (5) |
C17—C18—C19—O1 | 179.3 (3) | N1—C1—C6—C5 | 175.4 (3) |
C17—C18—C19—C14 | −0.2 (5) | C17—C16—C15—C14 | −2.0 (6) |
C15—C14—C19—O1 | 179.2 (3) | N3—C16—C15—C14 | 175.1 (3) |
C13—C14—C19—O1 | −6.7 (5) | C19—C14—C15—C16 | 2.5 (5) |
C15—C14—C19—C18 | −1.3 (5) | C13—C14—C15—C16 | −171.6 (3) |
C13—C14—C19—C18 | 172.8 (4) | C19—C18—C17—C16 | 0.7 (5) |
C6—C1—C2—C3 | 0.1 (5) | C15—C16—C17—C18 | 0.4 (5) |
N1—C1—C2—C3 | −176.0 (3) | N3—C16—C17—C18 | −176.5 (3) |
C11—C12—C7—C8 | 0.5 (5) | C1—C6—C5—C4 | 0.9 (5) |
C11—C12—C7—N1 | −176.6 (3) | C6—C5—C4—C3 | −0.4 (6) |
C9—C8—C7—C12 | −1.7 (6) | C2—C3—C4—C5 | −0.4 (6) |
C9—C8—C7—N1 | 175.6 (3) |
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings A (C1–C6), B (C7–C12), C (C14–C19) and D (C20–C25), respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N2 | 0.84 | 1.81 | 2.559 (4) | 147 |
C9—H9···O1i | 0.95 | 2.45 | 3.307 (5) | 150 |
C3—H3···Cg1ii | 0.95 | 2.83 | 3.509 (4) | 129 |
C6—H6···Cg1iii | 0.95 | 2.87 | 3.556 (4) | 130 |
C8—H8···Cg2iv | 0.95 | 2.80 | 3.538 (4) | 135 |
C11—H11···Cg2v | 0.95 | 2.73 | 3.441 (4) | 132 |
C15—H15···Cg3iii | 0.95 | 2.89 | 3.584 (4) | 131 |
C18—H18···Cg3ii | 0.95 | 2.80 | 3.474 (4) | 129 |
C22—H22···Cg4iii | 0.95 | 2.79 | 3.536 (4) | 136 |
C25—H25···Cg4ii | 0.95 | 2.60 | 3.373 (4) | 138 |
Symmetry codes: (i) x, y, z+1; (ii) x, −y, z−1/2; (iii) x, −y+1, z+1/2; (iv) x, −y, z+1/2; (v) x, −y+1, z−1/2. |
Acknowledgements
The authors are grateful to Drs Igor Fritsky and Graham Smith for valuable discussions.
Funding information
Funding for this research was provided by: Department of Chemistry, Taras Shevchenko National University of Kyiv.
References
Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cariati, F., Caruso, U., Centore, R., De Maria, A., Fusco, M., Panunzi, B., Roviello, A. & Tuzi, A. (2004). Inorg. Chim. Acta, 357, 548–556. CSD CrossRef CAS Google Scholar
Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier. Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017). Acta Cryst. E73, 112–114. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28–30. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier. Google Scholar
İspir, E. (2009). Dyes Pigments, 82, 13–19. Google Scholar
Jalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537–2544. Google Scholar
Khandar, A. A. & Rezvani, Z. (1998). Polyhedron, 18, 129–133. CrossRef Google Scholar
Khedr, A. M., Gaber, M., Issa, R. M. & Erten, H. (2005). Dyes Pigments, 67, 117–126. CrossRef CAS Google Scholar
Kurtoglu, G., Avar, B., Zengin, H., Kose, M., Sayin, K. & Kurtoglu, M. (2014). J. Mol. Liq. 200, 105–114. CrossRef CAS Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press. Google Scholar
Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428. CrossRef CAS Google Scholar
Qian, Y., Lin, B., Xiao, G., Li, H. & Yuan, C. (2004). Opt. Mater. 27, 125–130. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812. Google Scholar
Udhayakumari, D., Velmathi, S., Venkatesan, P. & Wu, S.-P. (2015). J. Lumin. 161, 411–416. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.