metal-organic compounds
(Benzylthiolato-κS)phenylmercury(II)
aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: manoj_vns2005@yahoo.co.in
The title complex, [Hg(C6H5)(C7H7S)], was synthesized from benzyl 4-methylpiperidine-1-carbodithioate. In the complex, the HgII cation binds to a C atom of a phenyl ring and the S atom of a benzylthiolate ligand in a linear coordination geometry. The molecule is bent at the methylene C atom and the S atom, resulting in a syn conformation with respect to the benzyl and phenyl rings. The dihedral angle between the phenyl and benzyl rings is 64.6 (2)°. The is stabilized by intermolecular Hg⋯S [3.290 (3) Å] contacts and C—H⋯π interactions, generating a three-dimensional network.
CCDC reference: 1509869
Structure description
Organomercury(II) cations have a high affinity for bonding through the sulfur donor sites present in amino acids, ; Hoffmeyer et al., 2006; Rooney, 2007). Crystal structures of several phenylmercury(II) complexes with Hg—S bonds and strong intermolecular Hg⋯S interactions have been reported (Yadav et al., 2014; Bharti et al., 2013; Nath et al., 2016). Mercury has long been used in medicine and industry which has caused toxicity problems. All forms of mercury are toxic in high doses (Clifton, 2007). Compounds with a mercapto group e.g. 2,3-dimercaptopropanol (British Anti-Lewisite) are used as antidotes in cases of mercury poisoning (Canty & Kishimoto, 1975). 4-Methyl-piperidinecarbodithioate forms a linear mercury(II) complex in which the dithiosulfur atom coordinates to the mercury(II) ion (Nath et al., 2016; Dar et al., 2015) while in the present work the benzyl ester undergoes cleavage and a sulfur atom from the benzyl mercapto moiety of the ligand coordinates to the mercury(II) cation (Fig. 1). Some complexes of the benzenemethanethiolato ligand have been reported previously (Wong et al., 2005; Papadopoulos et al., 1996; Berg et al., 1979). Sachs has reported many organo-mercury including this complex, but the data was not reported (Sachs, 1923). Therefore, in this work we report the synthesis (Fig. 1), spectroscopic data and of the title complex.
and proteins (Clarkson & Magos, 2006The molecular structure of the title complex is shown in Fig. 2. The HgII cation is bound to the phenyl ipso-carbon and the thiolato sulfur atom of a benzenemethanethiolato ligand. This is generated in situ during the preparation. The geometry around HgII is almost linear C1—Hg—S1 = 178.0 (3)°. The phenyl rings (C1–C6 and C8–C13) are inclined to one another at a dihedral angle of 64.6 (2)°. The Hg—S1 bond length is 2.360 (2) Å which is quite similar to other reported Hg—S bonds (Bharti et al., 2013; Nath et al., 2016). The molecule is bent at the sulfur atom and methylene carbon with bond angles of 104.4 (3) and 111.4 (6)°, respectively, which is close to the regular tetrahedral angle. The Hg—S1—C7—C8 torsion angle of 2.7 (9)° reflects the fact that the benzyl and phenylmercury groups are in a syn orientation with respect to one another.
Molecules in the iv 3.290 (3) Å; iv = −x + , −y + ,z + 1/2] (Fig. 3) and three C—H⋯π interactions (Fig. 4, Table 1), leading to a three-dimensional network.
are stabilized by intermolecular Hg⋯S interactions [Hg⋯SSynthesis and crystallization
A mixture of potassium 4-methyl-piperidinecarbodithioate (Nath et al., 2016) and benzyl chloride in absolute methanol was stirred for 3 h at room temperature. The solid benzyl 4-methylpiperidine-1-carbodithioate obtained upon removal of the solvent was washed with CCl4 and dried. A mixture of a methanol–chloroform solution (50:50) of phenylmercury acetate 0.674 g (2 mmol) and benzyl 4-methylpiperidine-1-carbodithioate 0.531 g (2 mmol) was stirred for 2 h at at room temperature. The clear solution was filtered off and kept for crystallization, colourless prismatic crystals of the title compound suitable for X-ray analyses were obtained after 8 d (Fig. 1) Yield: 60%; m.p.: 392–394 K. Analysis found. C, 39.30; H, 3.12; S, 7.83%. Calculated for C13H12HgS (400.88): C, 38.94; H, 3.01; S, 8.00%. IR (selected, KBr): 3063 [ν(C—H)], 2940 [ν(C—H)], 731 [ν(C—S)] cm-1. 1H NMR (CDCl3): δ [p.p.m.] = 4.23 (s, 2H, CH2), 7.04–7.44 (m, 10H, aromatic H). 13C NMR (CDCl3): δ [p.p.m.] = 32.0 (CH2), 127.2–146.5 (aromatic C).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1509869
https://doi.org/10.1107/S241431461700503X/sj4103sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700503X/sj4103Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Hg(C6H5)(C7H7S)] | Dx = 2.226 Mg m−3 |
Mr = 400.88 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 4836 reflections |
a = 20.4402 (6) Å | θ = 3.7–32.2° |
c = 5.7266 (4) Å | µ = 13.00 mm−1 |
V = 2392.6 (2) Å3 | T = 173 K |
Z = 8 | Prismatic, colourless |
F(000) = 1488 | 0.60 × 0.25 × 0.22 mm |
Rigaku Xcalibur, Eos, Gemini diffractometer | 4085 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 3706 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.085 |
ω scans | θmax = 32.7°, θmin = 3.2° |
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015) | h = −29→30 |
Tmin = 0.011, Tmax = 0.123 | k = −30→31 |
4085 measured reflections | l = −8→8 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0241P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.96 e Å−3 |
4085 reflections | Δρmin = −1.26 e Å−3 |
136 parameters | Absolute structure: Flack x determined using 1447 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.006 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg | 0.67354 (2) | 0.75027 (2) | 0.68688 (6) | 0.02102 (8) | |
S1 | 0.77105 (10) | 0.81205 (10) | 0.6783 (5) | 0.0240 (4) | |
C1 | 0.5873 (4) | 0.6967 (4) | 0.6822 (19) | 0.0208 (16) | |
C2 | 0.5709 (4) | 0.6553 (5) | 0.8683 (17) | 0.026 (2) | |
H2A | 0.5983 | 0.6536 | 1.0021 | 0.031* | |
C3 | 0.5150 (4) | 0.6166 (5) | 0.8591 (18) | 0.029 (2) | |
H3A | 0.5047 | 0.5879 | 0.9846 | 0.035* | |
C4 | 0.4742 (4) | 0.6201 (4) | 0.6637 (19) | 0.0277 (19) | |
H4A | 0.4357 | 0.5941 | 0.6564 | 0.033* | |
C5 | 0.4895 (5) | 0.6608 (5) | 0.4846 (19) | 0.033 (2) | |
H5A | 0.4614 | 0.6629 | 0.3525 | 0.040* | |
C6 | 0.5460 (5) | 0.6999 (5) | 0.4901 (18) | 0.030 (2) | |
H6A | 0.5558 | 0.7283 | 0.3635 | 0.036* | |
C7 | 0.7490 (4) | 0.8871 (5) | 0.516 (2) | 0.035 (3) | |
H7A | 0.7590 | 0.9258 | 0.6136 | 0.042* | |
H7B | 0.7758 | 0.8899 | 0.3724 | 0.042* | |
C8 | 0.6781 (4) | 0.8876 (4) | 0.4522 (19) | 0.0234 (18) | |
C9 | 0.6320 (5) | 0.9142 (4) | 0.6053 (18) | 0.026 (2) | |
H9A | 0.6462 | 0.9349 | 0.7449 | 0.031* | |
C10 | 0.5666 (5) | 0.9108 (5) | 0.556 (2) | 0.034 (2) | |
H10A | 0.5359 | 0.9278 | 0.6652 | 0.041* | |
C11 | 0.5444 (5) | 0.8833 (5) | 0.351 (2) | 0.035 (3) | |
H11A | 0.4988 | 0.8813 | 0.3191 | 0.042* | |
C12 | 0.5890 (5) | 0.8585 (5) | 0.194 (2) | 0.033 (2) | |
H12A | 0.5741 | 0.8399 | 0.0514 | 0.039* | |
C13 | 0.6563 (5) | 0.8609 (5) | 0.2429 (16) | 0.027 (2) | |
H13A | 0.6869 | 0.8442 | 0.1332 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg | 0.01884 (15) | 0.02023 (16) | 0.02399 (15) | −0.00296 (12) | 0.00159 (14) | 0.00177 (14) |
S1 | 0.0174 (9) | 0.0257 (10) | 0.0288 (11) | −0.0027 (7) | −0.0027 (10) | 0.0064 (11) |
C1 | 0.021 (4) | 0.014 (3) | 0.028 (4) | −0.003 (3) | −0.001 (4) | −0.004 (4) |
C2 | 0.018 (4) | 0.034 (5) | 0.026 (5) | 0.002 (3) | −0.001 (3) | 0.003 (4) |
C3 | 0.017 (4) | 0.032 (5) | 0.038 (6) | −0.005 (3) | 0.004 (4) | 0.010 (4) |
C4 | 0.022 (4) | 0.029 (4) | 0.033 (5) | −0.005 (3) | 0.003 (4) | −0.006 (4) |
C5 | 0.029 (5) | 0.036 (5) | 0.034 (6) | −0.002 (4) | −0.016 (4) | −0.002 (4) |
C6 | 0.032 (5) | 0.031 (5) | 0.026 (5) | −0.004 (4) | −0.007 (4) | 0.005 (4) |
C7 | 0.018 (4) | 0.030 (5) | 0.058 (8) | −0.005 (3) | −0.003 (5) | 0.015 (5) |
C8 | 0.027 (4) | 0.014 (4) | 0.030 (5) | −0.005 (3) | 0.002 (4) | 0.003 (4) |
C9 | 0.030 (5) | 0.020 (4) | 0.027 (5) | −0.001 (3) | −0.001 (4) | −0.003 (4) |
C10 | 0.030 (5) | 0.029 (5) | 0.044 (6) | 0.003 (4) | 0.009 (5) | −0.001 (5) |
C11 | 0.029 (5) | 0.028 (5) | 0.048 (7) | −0.002 (4) | −0.011 (5) | 0.011 (5) |
C12 | 0.044 (6) | 0.027 (4) | 0.027 (5) | −0.005 (4) | −0.009 (6) | 0.000 (5) |
C13 | 0.036 (5) | 0.027 (4) | 0.018 (5) | 0.004 (4) | 0.008 (4) | 0.003 (3) |
Hg—C1 | 2.076 (8) | C7—C8 | 1.496 (12) |
Hg—S1 | 2.360 (2) | C7—H7A | 0.9900 |
S1—C7 | 1.848 (10) | C7—H7B | 0.9900 |
C1—C6 | 1.388 (13) | C8—C13 | 1.390 (13) |
C1—C2 | 1.402 (13) | C8—C9 | 1.398 (13) |
C2—C3 | 1.390 (12) | C9—C10 | 1.368 (13) |
C2—H2A | 0.9500 | C9—H9A | 0.9500 |
C3—C4 | 1.398 (14) | C10—C11 | 1.378 (16) |
C3—H3A | 0.9500 | C10—H10A | 0.9500 |
C4—C5 | 1.357 (14) | C11—C12 | 1.378 (16) |
C4—H4A | 0.9500 | C11—H11A | 0.9500 |
C5—C6 | 1.404 (13) | C12—C13 | 1.406 (14) |
C5—H5A | 0.9500 | C12—H12A | 0.9500 |
C6—H6A | 0.9500 | C13—H13A | 0.9500 |
C1—Hg—S1 | 178.0 (3) | S1—C7—H7A | 109.4 |
C7—S1—Hg | 104.4 (3) | C8—C7—H7B | 109.4 |
C6—C1—C2 | 119.0 (7) | S1—C7—H7B | 109.4 |
C6—C1—Hg | 120.2 (7) | H7A—C7—H7B | 108.0 |
C2—C1—Hg | 120.8 (7) | C13—C8—C9 | 118.5 (8) |
C3—C2—C1 | 120.7 (8) | C13—C8—C7 | 121.3 (9) |
C3—C2—H2A | 119.6 | C9—C8—C7 | 120.2 (10) |
C1—C2—H2A | 119.6 | C10—C9—C8 | 120.7 (9) |
C2—C3—C4 | 119.4 (9) | C10—C9—H9A | 119.7 |
C2—C3—H3A | 120.3 | C8—C9—H9A | 119.7 |
C4—C3—H3A | 120.3 | C9—C10—C11 | 121.2 (10) |
C5—C4—C3 | 119.9 (8) | C9—C10—H10A | 119.4 |
C5—C4—H4A | 120.0 | C11—C10—H10A | 119.4 |
C3—C4—H4A | 120.0 | C12—C11—C10 | 119.3 (9) |
C4—C5—C6 | 121.4 (9) | C12—C11—H11A | 120.4 |
C4—C5—H5A | 119.3 | C10—C11—H11A | 120.4 |
C6—C5—H5A | 119.3 | C11—C12—C13 | 120.3 (10) |
C1—C6—C5 | 119.4 (9) | C11—C12—H12A | 119.9 |
C1—C6—H6A | 120.3 | C13—C12—H12A | 119.9 |
C5—C6—H6A | 120.3 | C8—C13—C12 | 119.9 (9) |
C8—C7—S1 | 111.4 (6) | C8—C13—H13A | 120.0 |
C8—C7—H7A | 109.4 | C12—C13—H13A | 120.0 |
C6—C1—C2—C3 | 1.6 (14) | S1—C7—C8—C9 | 89.2 (10) |
Hg—C1—C2—C3 | −176.3 (7) | C13—C8—C9—C10 | 3.6 (14) |
C1—C2—C3—C4 | −1.2 (14) | C7—C8—C9—C10 | −175.4 (9) |
C2—C3—C4—C5 | 0.4 (14) | C8—C9—C10—C11 | −2.3 (15) |
C3—C4—C5—C6 | 0.0 (16) | C9—C10—C11—C12 | 0.2 (15) |
C2—C1—C6—C5 | −1.1 (14) | C10—C11—C12—C13 | 0.7 (15) |
Hg—C1—C6—C5 | 176.7 (8) | C9—C8—C13—C12 | −2.7 (13) |
C4—C5—C6—C1 | 0.4 (16) | C7—C8—C13—C12 | 176.2 (9) |
Hg—S1—C7—C8 | 2.7 (9) | C11—C12—C13—C8 | 0.6 (14) |
S1—C7—C8—C13 | −89.7 (11) |
Cg1, Cg2 are the centroids of the benzene C1–C6 and C8–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···Cg1i | 0.95 | 3.00 | 3.799 (4) | 143 |
C7—H7A···Cg1ii | 0.99 | 2.98 | 3.913 (8) | 157 |
C11—H11A···Cg2iii | 0.95 | 2.63 | 3.547 (6) | 162 |
Symmetry codes: (i) −y, x, −z; (ii) −y+1/2, x+1/2, −z+1/2; (iii) −x−1/2, −y+1/2, z−1/2. |
Acknowledgements
MKB thanks the Science and Engineering Research Board, India for the award of a Project (No. SB/EMEQ-150/2014). JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Berg, J. M., Hodgson, K. O. & Holm, R. H. (1979). J. Am. Chem. Soc. 101, 4586–4593. CSD CrossRef CAS Web of Science Google Scholar
Bharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170–180. Web of Science CSD CrossRef CAS Google Scholar
Canty, A. J. & Kishimoto, R. (1975). Nature, 253, 123–125. CrossRef PubMed CAS Web of Science Google Scholar
Clarkson, T. W. & Magos, L. (2006). Crit. Rev. Toxicol. 36, 609–662. Web of Science CrossRef PubMed CAS Google Scholar
Clifton, J. C. II (2007). Pediatr. Clin. North Am. 54, 237.e1–237.e45. Web of Science CrossRef Google Scholar
Dar, S. H., Thirumaran, S. & Selvanayagam, S. (2015). Polyhedron, 96, 16–24. Web of Science CSD CrossRef CAS Google Scholar
Hoffmeyer, R. E., Singh, S. P., Doonan, C. J., Ross, A. R. S., Hughes, R. J., Pickering, I. P. & George, G. N. (2006). Chem. Res. Toxicol. 19, 753–759. Web of Science CrossRef PubMed CAS Google Scholar
Nath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867–93880. Web of Science CSD CrossRef CAS Google Scholar
Papadopoulos, M. S., Pelecanou, M., Pirmettis, I. C., Spyriounis, D. M., Raptopoulou, C. P., Terzis, A., Stassinopoulou, C. I. & Chiotellis, E. (1996). Inorg. Chem. 35, 4478–4483. CSD CrossRef PubMed CAS Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rooney, J. P. K. (2007). Toxicology, 234, 145–156. Web of Science CrossRef PubMed CAS Google Scholar
Sachs, G. (1923). Justus Liebigs Ann. Chem. 433, 154–163. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wong, R. C. S., Ooi, M. L., Chee, C. F. & Tan, G. H. (2005). Inorg. Chim. Acta, 358, 1269–1273. Web of Science CSD CrossRef CAS Google Scholar
Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.