metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Benzyl­thiol­ato-κS)phenyl­mercury(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: manoj_vns2005@yahoo.co.in

Edited by J. Simpson, University of Otago, New Zealand (Received 29 March 2017; accepted 31 March 2017; online 7 April 2017)

The title complex, [Hg(C6H5)(C7H7S)], was synthesized from benzyl 4-methyl­piperidine-1-carbodithioate. In the complex, the HgII cation binds to a C atom of a phenyl ring and the S atom of a benzyl­thiol­ate ligand in a linear coordination geometry. The mol­ecule is bent at the methyl­ene C atom and the S atom, resulting in a syn conformation with respect to the benzyl and phenyl rings. The dihedral angle between the phenyl and benzyl rings is 64.6 (2)°. The crystal structure is stabilized by inter­molecular Hg⋯S [3.290 (3) Å] contacts and C—H⋯π inter­actions, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organomercury(II) cations have a high affinity for bonding through the sulfur donor sites present in amino acids, peptides and proteins (Clarkson & Magos, 2006[Clarkson, T. W. & Magos, L. (2006). Crit. Rev. Toxicol. 36, 609-662.]; Hoffmeyer et al., 2006[Hoffmeyer, R. E., Singh, S. P., Doonan, C. J., Ross, A. R. S., Hughes, R. J., Pickering, I. P. & George, G. N. (2006). Chem. Res. Toxicol. 19, 753-759.]; Rooney, 2007[Rooney, J. P. K. (2007). Toxicology, 234, 145-156.]). Crystal structures of several phenyl­mercury(II) complexes with Hg—S bonds and strong intermolecular Hg⋯S inter­actions have been reported (Yadav et al., 2014[Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210-217.]; Bharti et al., 2013[Bharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170-180.]; Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]). Mercury has long been used in medicine and industry which has caused toxicity problems. All forms of mercury are toxic in high doses (Clifton, 2007[Clifton, J. C. II (2007). Pediatr. Clin. North Am. 54, 237.e1-237.e45.]). Compounds with a mercapto group e.g. 2,3-dimercapto­propanol (British Anti-Lewisite) are used as anti­dotes in cases of mercury poisoning (Canty & Kishimoto, 1975[Canty, A. J. & Kishimoto, R. (1975). Nature, 253, 123-125.]). 4-Methyl-piperidine­carbodi­thio­ate forms a linear mercury(II) complex in which the di­thio­sulfur atom coordinates to the mercury(II) ion (Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]; Dar et al., 2015[Dar, S. H., Thirumaran, S. & Selvanayagam, S. (2015). Polyhedron, 96, 16-24.]) while in the present work the benzyl ester undergoes cleavage and a sulfur atom from the benzyl mercapto moiety of the ligand coordinates to the mercury(II) cation (Fig. 1[link]). Some complexes of the benzene­methane­thiol­ato ligand have been reported previously (Wong et al., 2005[Wong, R. C. S., Ooi, M. L., Chee, C. F. & Tan, G. H. (2005). Inorg. Chim. Acta, 358, 1269-1273.]; Papadopoulos et al., 1996[Papadopoulos, M. S., Pelecanou, M., Pirmettis, I. C., Spyriounis, D. M., Raptopoulou, C. P., Terzis, A., Stassinopoulou, C. I. & Chiotellis, E. (1996). Inorg. Chem. 35, 4478-4483.]; Berg et al., 1979[Berg, J. M., Hodgson, K. O. & Holm, R. H. (1979). J. Am. Chem. Soc. 101, 4586-4593.]). Sachs has reported many organo-mercury mercaptides, including this complex, but the crystal structure data was not reported (Sachs, 1923[Sachs, G. (1923). Justus Liebigs Ann. Chem. 433, 154-163.]). Therefore, in this work we report the synthesis (Fig. 1[link]), spectroscopic data and crystal structure of the title complex.

[Figure 1]
Figure 1
A reaction scheme showing the synthesis of the title compound.

The mol­ecular structure of the title complex is shown in Fig. 2[link]. The HgII cation is bound to the phenyl ipso-carbon and the thiol­ato sulfur atom of a benzene­methane­thiol­ato ligand. This is generated in situ during the preparation. The geometry around HgII is almost linear C1—Hg—S1 = 178.0 (3)°. The phenyl rings (C1–C6 and C8–C13) are inclined to one another at a dihedral angle of 64.6 (2)°. The Hg—S1 bond length is 2.360 (2) Å which is quite similar to other reported Hg—S bonds (Bharti et al., 2013[Bharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170-180.]; Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]). The mol­ecule is bent at the sulfur atom and methyl­ene carbon with bond angles of 104.4 (3) and 111.4 (6)°, respectively, which is close to the regular tetra­hedral angle. The Hg—S1—C7—C8 torsion angle of 2.7 (9)° reflects the fact that the benzyl and phenyl­mercury groups are in a syn orientation with respect to one another.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

Mol­ecules in the crystal structure are stabilized by inter­molecular Hg⋯S inter­actions [Hg⋯Siv 3.290 (3) Å; iv = −x + [{3\over 2}], −y + [{3\over 2}],z + 1/2] (Fig. 3[link]) and three C—H⋯π inter­actions (Fig. 4[link], Table 1[link]), leading to a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 are the centroids of the benzene C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.95 3.00 3.799 (4) 143
C7—H7ACg1ii 0.99 2.98 3.913 (8) 157
C11—H11ACg2iii 0.95 2.63 3.547 (6) 162
Symmetry codes: (i) -y, x, -z; (ii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the b axis. Dashed lines indicate inter­molecular Hg⋯S inter­actions.
[Figure 4]
Figure 4
A view of the packing along the c axis, showing the C—H⋯π contacts.

Synthesis and crystallization

A mixture of potassium 4-methyl-piperidine­carbodi­thio­ate (Nath et al., 2016[Nath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867-93880.]) and benzyl chloride in absolute methanol was stirred for 3 h at room temperature. The solid benzyl 4-methyl­piperidine-1-carbodithioate obtained upon removal of the solvent was washed with CCl4 and dried. A mixture of a methanol–chloro­form solution (50:50) of phenyl­mercury acetate 0.674 g (2 mmol) and benzyl 4-methyl­piperidine-1-car­bodithioate 0.531 g (2 mmol) was stirred for 2 h at at room temperature. The clear solution was filtered off and kept for crystallization, colourless prismatic crystals of the title com­pound suitable for X-ray analyses were obtained after 8 d (Fig. 1[link]) Yield: 60%; m.p.: 392–394 K. Analysis found. C, 39.30; H, 3.12; S, 7.83%. Calculated for C13H12HgS (400.88): C, 38.94; H, 3.01; S, 8.00%. IR (selected, KBr): 3063 [ν(C—H)], 2940 [ν(C—H)], 731 [ν(C—S)] cm-1. 1H NMR (CDCl3): δ [p.p.m.] = 4.23 (s, 2H, CH2), 7.04–7.44 (m, 10H, aromatic H). 13C NMR (CDCl3): δ [p.p.m.] = 32.0 (CH2), 127.2–146.5 (aromatic C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Hg(C6H5)(C7H7S)]
Mr 400.88
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 173
a, c (Å) 20.4402 (6), 5.7266 (4)
V3) 2392.6 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 13.00
Crystal size (mm) 0.60 × 0.25 × 0.22
 
Data collection
Diffractometer Rigaku Xcalibur, Eos, Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.011, 0.123
No. of measured, independent and observed [I > 2σ(I)] reflections 4085, 4085, 3706
Rint 0.085
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.04
No. of reflections 4085
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −1.26
Absolute structure Flack x determined using 1447 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.006 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Benzylthiolato-κS)phenylmercury(II) top
Crystal data top
[Hg(C6H5)(C7H7S)]Dx = 2.226 Mg m3
Mr = 400.88Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 4836 reflections
a = 20.4402 (6) Åθ = 3.7–32.2°
c = 5.7266 (4) ŵ = 13.00 mm1
V = 2392.6 (2) Å3T = 173 K
Z = 8Prismatic, colourless
F(000) = 14880.60 × 0.25 × 0.22 mm
Data collection top
Rigaku Xcalibur, Eos, Gemini
diffractometer
4085 independent reflections
Radiation source: fine-focus sealed X-ray tube3706 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.085
ω scansθmax = 32.7°, θmin = 3.2°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
h = 2930
Tmin = 0.011, Tmax = 0.123k = 3031
4085 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0241P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.96 e Å3
4085 reflectionsΔρmin = 1.26 e Å3
136 parametersAbsolute structure: Flack x determined using 1447 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.006 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.67354 (2)0.75027 (2)0.68688 (6)0.02102 (8)
S10.77105 (10)0.81205 (10)0.6783 (5)0.0240 (4)
C10.5873 (4)0.6967 (4)0.6822 (19)0.0208 (16)
C20.5709 (4)0.6553 (5)0.8683 (17)0.026 (2)
H2A0.59830.65361.00210.031*
C30.5150 (4)0.6166 (5)0.8591 (18)0.029 (2)
H3A0.50470.58790.98460.035*
C40.4742 (4)0.6201 (4)0.6637 (19)0.0277 (19)
H4A0.43570.59410.65640.033*
C50.4895 (5)0.6608 (5)0.4846 (19)0.033 (2)
H5A0.46140.66290.35250.040*
C60.5460 (5)0.6999 (5)0.4901 (18)0.030 (2)
H6A0.55580.72830.36350.036*
C70.7490 (4)0.8871 (5)0.516 (2)0.035 (3)
H7A0.75900.92580.61360.042*
H7B0.77580.88990.37240.042*
C80.6781 (4)0.8876 (4)0.4522 (19)0.0234 (18)
C90.6320 (5)0.9142 (4)0.6053 (18)0.026 (2)
H9A0.64620.93490.74490.031*
C100.5666 (5)0.9108 (5)0.556 (2)0.034 (2)
H10A0.53590.92780.66520.041*
C110.5444 (5)0.8833 (5)0.351 (2)0.035 (3)
H11A0.49880.88130.31910.042*
C120.5890 (5)0.8585 (5)0.194 (2)0.033 (2)
H12A0.57410.83990.05140.039*
C130.6563 (5)0.8609 (5)0.2429 (16)0.027 (2)
H13A0.68690.84420.13320.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.01884 (15)0.02023 (16)0.02399 (15)0.00296 (12)0.00159 (14)0.00177 (14)
S10.0174 (9)0.0257 (10)0.0288 (11)0.0027 (7)0.0027 (10)0.0064 (11)
C10.021 (4)0.014 (3)0.028 (4)0.003 (3)0.001 (4)0.004 (4)
C20.018 (4)0.034 (5)0.026 (5)0.002 (3)0.001 (3)0.003 (4)
C30.017 (4)0.032 (5)0.038 (6)0.005 (3)0.004 (4)0.010 (4)
C40.022 (4)0.029 (4)0.033 (5)0.005 (3)0.003 (4)0.006 (4)
C50.029 (5)0.036 (5)0.034 (6)0.002 (4)0.016 (4)0.002 (4)
C60.032 (5)0.031 (5)0.026 (5)0.004 (4)0.007 (4)0.005 (4)
C70.018 (4)0.030 (5)0.058 (8)0.005 (3)0.003 (5)0.015 (5)
C80.027 (4)0.014 (4)0.030 (5)0.005 (3)0.002 (4)0.003 (4)
C90.030 (5)0.020 (4)0.027 (5)0.001 (3)0.001 (4)0.003 (4)
C100.030 (5)0.029 (5)0.044 (6)0.003 (4)0.009 (5)0.001 (5)
C110.029 (5)0.028 (5)0.048 (7)0.002 (4)0.011 (5)0.011 (5)
C120.044 (6)0.027 (4)0.027 (5)0.005 (4)0.009 (6)0.000 (5)
C130.036 (5)0.027 (4)0.018 (5)0.004 (4)0.008 (4)0.003 (3)
Geometric parameters (Å, º) top
Hg—C12.076 (8)C7—C81.496 (12)
Hg—S12.360 (2)C7—H7A0.9900
S1—C71.848 (10)C7—H7B0.9900
C1—C61.388 (13)C8—C131.390 (13)
C1—C21.402 (13)C8—C91.398 (13)
C2—C31.390 (12)C9—C101.368 (13)
C2—H2A0.9500C9—H9A0.9500
C3—C41.398 (14)C10—C111.378 (16)
C3—H3A0.9500C10—H10A0.9500
C4—C51.357 (14)C11—C121.378 (16)
C4—H4A0.9500C11—H11A0.9500
C5—C61.404 (13)C12—C131.406 (14)
C5—H5A0.9500C12—H12A0.9500
C6—H6A0.9500C13—H13A0.9500
C1—Hg—S1178.0 (3)S1—C7—H7A109.4
C7—S1—Hg104.4 (3)C8—C7—H7B109.4
C6—C1—C2119.0 (7)S1—C7—H7B109.4
C6—C1—Hg120.2 (7)H7A—C7—H7B108.0
C2—C1—Hg120.8 (7)C13—C8—C9118.5 (8)
C3—C2—C1120.7 (8)C13—C8—C7121.3 (9)
C3—C2—H2A119.6C9—C8—C7120.2 (10)
C1—C2—H2A119.6C10—C9—C8120.7 (9)
C2—C3—C4119.4 (9)C10—C9—H9A119.7
C2—C3—H3A120.3C8—C9—H9A119.7
C4—C3—H3A120.3C9—C10—C11121.2 (10)
C5—C4—C3119.9 (8)C9—C10—H10A119.4
C5—C4—H4A120.0C11—C10—H10A119.4
C3—C4—H4A120.0C12—C11—C10119.3 (9)
C4—C5—C6121.4 (9)C12—C11—H11A120.4
C4—C5—H5A119.3C10—C11—H11A120.4
C6—C5—H5A119.3C11—C12—C13120.3 (10)
C1—C6—C5119.4 (9)C11—C12—H12A119.9
C1—C6—H6A120.3C13—C12—H12A119.9
C5—C6—H6A120.3C8—C13—C12119.9 (9)
C8—C7—S1111.4 (6)C8—C13—H13A120.0
C8—C7—H7A109.4C12—C13—H13A120.0
C6—C1—C2—C31.6 (14)S1—C7—C8—C989.2 (10)
Hg—C1—C2—C3176.3 (7)C13—C8—C9—C103.6 (14)
C1—C2—C3—C41.2 (14)C7—C8—C9—C10175.4 (9)
C2—C3—C4—C50.4 (14)C8—C9—C10—C112.3 (15)
C3—C4—C5—C60.0 (16)C9—C10—C11—C120.2 (15)
C2—C1—C6—C51.1 (14)C10—C11—C12—C130.7 (15)
Hg—C1—C6—C5176.7 (8)C9—C8—C13—C122.7 (13)
C4—C5—C6—C10.4 (16)C7—C8—C13—C12176.2 (9)
Hg—S1—C7—C82.7 (9)C11—C12—C13—C80.6 (14)
S1—C7—C8—C1389.7 (11)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 are the centroids of the benzene C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1i0.953.003.799 (4)143
C7—H7A···Cg1ii0.992.983.913 (8)157
C11—H11A···Cg2iii0.952.633.547 (6)162
Symmetry codes: (i) y, x, z; (ii) y+1/2, x+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

MKB thanks the Science and Engineering Research Board, India for the award of a Project (No. SB/EMEQ-150/2014). JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationBerg, J. M., Hodgson, K. O. & Holm, R. H. (1979). J. Am. Chem. Soc. 101, 4586–4593.  CSD CrossRef CAS Web of Science Google Scholar
First citationBharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationCanty, A. J. & Kishimoto, R. (1975). Nature, 253, 123–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationClarkson, T. W. & Magos, L. (2006). Crit. Rev. Toxicol. 36, 609–662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClifton, J. C. II (2007). Pediatr. Clin. North Am. 54, 237.e1–237.e45.  Web of Science CrossRef Google Scholar
First citationDar, S. H., Thirumaran, S. & Selvanayagam, S. (2015). Polyhedron, 96, 16–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoffmeyer, R. E., Singh, S. P., Doonan, C. J., Ross, A. R. S., Hughes, R. J., Pickering, I. P. & George, G. N. (2006). Chem. Res. Toxicol. 19, 753–759.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNath, P., Bharty, M. K., Maiti, B., Bharti, A., Butcher, R. J., Wikaira, J. L. & Singh, N. K. (2016). RSC Adv. 6, 93867–93880.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapadopoulos, M. S., Pelecanou, M., Pirmettis, I. C., Spyriounis, D. M., Raptopoulou, C. P., Terzis, A., Stassinopoulou, C. I. & Chiotellis, E. (1996). Inorg. Chem. 35, 4478–4483.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRooney, J. P. K. (2007). Toxicology, 234, 145–156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSachs, G. (1923). Justus Liebigs Ann. Chem. 433, 154–163.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWong, R. C. S., Ooi, M. L., Chee, C. F. & Tan, G. H. (2005). Inorg. Chim. Acta, 358, 1269–1273.  Web of Science CSD CrossRef CAS Google Scholar
First citationYadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds