organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[(1H-Imidazol-1-yl)meth­yl]-1-(4-nitro­benz­yl)-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: azzeddinesahbi1982@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 26 March 2017; accepted 3 April 2017; online 7 April 2017)

The title mol­ecule, C13H12N6O2, adopts a slightly twisted zigzag conformation in the crystal, with the dihedral angles between the central triazole ring and the 4-nitro­phenyl and imidazole rings being 79.81 (11) and 81.21 (13)°, respectively. The packing features weak C—H⋯O and C—H⋯N hydrogen bonds, as well as unusual N=O⋯π stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of numerous heterocyclic compounds with different biological activities, including anti­microbial (Sheremet et al. 2004[Sheremet, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594-595.]), cytotoxic (Sanghvi et al., 1990[Sanghvi, Y. S., Bhattacharya, B. K., Kini, G. D., Matsumoto, S. S., Larson, S. B., Jolley, W. B., Robins, R. K. & Revankar, G. R. (1990). J. Med. Chem. 33, 336-344.]) and anti­bacterial activities (Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E., Essassi, E. M., Zerzouf, A., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Maroc. Chim. Heterocycl. 15, 1-11.]). They have also been reported to be inhibitors of glycogen synthase kinase-3 (Olesen et al., 2003[Olesen, P. H., Sørensen, A. R., Ursø, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333-3341.]) and agonists of muscarine receptors (Moltzen et al., 1994[Moltzen, E. K., Pedersen, H., Bøgesø, K. P., Meier, E., Frederiksen, K., Sánchez, C. & Løve Lembøl, H. (1994). J. Med. Chem. 37, 4085-4099.]). Herein we report the synthesis of 4-[(1H-imidazol-1-yl)meth­yl]-1-(4-nitro­benz­yl)-1H-1,2,3-triazole by the 1,3-dipolar cyclo­addition reaction of 1-(azido­meth­yl)-4-nitro­benzene with 1-(prop-2-yn-1-yl)-1H-imidazole.

The title mol­ecule adopts a slightly twisted, zigzag conformation (Fig. 1[link]) with the dihedral angles between the mean plane of the N2–N4/C8/C9 ring and those of the C1–C6 and N5/N6/C11–C13 rings being, 79.81 (11) and 81.21 (13)°, respectively. The crystal packing features weak C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]). In addition, unusual Cg1⋯Cg2v contacts, where Cg1 is the centroid of the C1–C6 ring and Cg2v is the mid-point of the N1=O2 bond [Cg1⋯Cg2 = 2.540 Å; symmetry code: (v) x, y, z − 1] link mol­ecules into chains along the c-axis direction (Fig. 4[link]). An N—O⋯π inter­action is also observed: O2⋯Cg1 = 3.626 (2) Å, N1⋯Cg1 = 3.5578 (19) Å and N1—O2⋯Cg1 = 77.05 (12)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.98 (2) 2.55 (2) 3.189 (2) 123.0 (18)
C7—H7B⋯N6ii 0.95 (3) 2.60 (3) 3.478 (3) 154 (2)
C11—H11⋯O2iii 0.98 (3) 2.66 (3) 3.535 (3) 149 (2)
C6—H6⋯N3iv 1.00 (2) 2.54 (3) 3.299 (3) 133 (2)
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (iv) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Details of the inter­molecular C—H⋯O and C—H⋯N hydrogen bonds shown, respectively, as purple and black dashed lines. For symmetry codes see Table 1[link].
[Figure 3]
Figure 3
Overall packing viewed along the c-axis direction with hydrogen bonds depicted as in Fig. 2[link].
[Figure 4]
Figure 4
Details of the N=O⋯π(ring) inter­actions (dashed lines).

Synthesis and crystallization

In a vial fitted with a screw cap, 1-(azido­meth­yl)-4-nitro­benzene (100 mg, 0.56 mmol) and 1-(prop-2-yn-1-yl)-1H-imidazole (62.5 mg, 0.58 mmol) were added to a mixture of copper(II) sulfate penta­hydrate (7 mg, 0.028 mmol), sodium ascorbate (16.6 mg, 0.083 mmol), and β-cyclo­dextrin (15.9 mg, 0.014 mmol) dissolved in H2O (1 ml) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The resulting mixture was poured into CH2Cl2 (3 ml) and H2O (3 ml) and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (3 ml) three times. The product was obtained as colorless crystals in 94% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H12N6O2
Mr 284.29
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 20.3330 (4), 14.2764 (3), 4.5089 (1)
V3) 1308.85 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.12 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 10013, 2611, 2410
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.05
No. of reflections 2611
No. of parameters 239
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.12, −0.12
Absolute structure Flack x determined using 956 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.10 (15)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-[(1H-Imidazol-1-yl)methyl]-1-(4-nitrobenzyl)-1H-1,2,3-triazole top
Crystal data top
C13H12N6O2Dx = 1.443 Mg m3
Mr = 284.29Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 8050 reflections
a = 20.3330 (4) Åθ = 3.8–74.4°
b = 14.2764 (3) ŵ = 0.86 mm1
c = 4.5089 (1) ÅT = 150 K
V = 1308.85 (5) Å3Column, colourless
Z = 40.12 × 0.06 × 0.04 mm
F(000) = 592
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2611 independent reflections
Radiation source: INCOATEC IµS micro-focus source2410 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.8°
ω scansh = 2523
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.88, Tmax = 0.96l = 55
10013 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.151P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.12 e Å3
2611 reflectionsΔρmin = 0.12 e Å3
239 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0044 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.10 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40535 (8)0.03081 (10)0.1143 (4)0.0449 (4)
O20.34070 (8)0.14915 (12)0.0656 (6)0.0567 (5)
N10.38941 (8)0.11157 (12)0.1721 (4)0.0344 (4)
N20.59199 (8)0.39660 (11)0.7619 (4)0.0284 (3)
N30.57204 (8)0.48647 (12)0.7668 (5)0.0339 (4)
N40.61097 (8)0.53343 (11)0.5897 (4)0.0335 (4)
N50.75335 (8)0.57154 (12)0.4154 (4)0.0327 (4)
N60.80031 (10)0.70206 (14)0.5784 (6)0.0528 (5)
H60.4522 (12)0.3802 (17)0.622 (7)0.049 (7)*
C10.51128 (9)0.26847 (13)0.7407 (4)0.0286 (4)
C20.52185 (10)0.17309 (14)0.7039 (5)0.0320 (4)
H20.5594 (12)0.1453 (17)0.805 (6)0.038 (6)*
C30.48152 (10)0.12100 (14)0.5201 (5)0.0316 (4)
H30.4875 (12)0.0537 (16)0.492 (6)0.039 (6)*
C40.43084 (9)0.16574 (13)0.3753 (4)0.0285 (4)
C50.41831 (10)0.26072 (13)0.4096 (5)0.0311 (4)
H50.3822 (13)0.2882 (17)0.298 (6)0.043 (7)*
C60.45909 (9)0.31160 (13)0.5940 (5)0.0319 (4)
C70.55609 (11)0.32640 (15)0.9344 (5)0.0336 (4)
H7B0.5873 (12)0.2880 (16)1.032 (7)0.043 (7)*
H7A0.5293 (12)0.3618 (17)1.084 (7)0.044 (6)*
C80.64394 (9)0.38588 (13)0.5772 (5)0.0317 (4)
H80.6659 (13)0.3258 (19)0.555 (8)0.054 (7)*
C90.65557 (9)0.47370 (14)0.4683 (4)0.0298 (4)
C100.70753 (10)0.50886 (16)0.2624 (5)0.0370 (5)
H10A0.7336 (12)0.4564 (18)0.173 (6)0.048 (7)*
H10B0.6876 (13)0.5447 (17)0.095 (8)0.052 (7)*
C110.80043 (10)0.54527 (16)0.6156 (5)0.0371 (5)
H110.8066 (13)0.4795 (18)0.667 (6)0.052 (8)*
C120.82835 (11)0.62560 (17)0.7119 (6)0.0436 (5)
H120.8633 (14)0.6326 (19)0.854 (8)0.061 (9)*
C130.75485 (11)0.66629 (16)0.4020 (6)0.0443 (5)
H130.7231 (14)0.7000 (18)0.274 (8)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0482 (9)0.0308 (8)0.0556 (10)0.0012 (6)0.0044 (8)0.0094 (7)
O20.0456 (9)0.0427 (9)0.0819 (14)0.0054 (7)0.0269 (10)0.0052 (10)
N10.0338 (8)0.0297 (9)0.0396 (11)0.0019 (7)0.0001 (7)0.0005 (7)
N20.0324 (8)0.0256 (8)0.0271 (8)0.0006 (6)0.0003 (7)0.0004 (7)
N30.0363 (8)0.0265 (8)0.0388 (9)0.0011 (7)0.0046 (8)0.0026 (8)
N40.0355 (8)0.0289 (8)0.0361 (9)0.0012 (7)0.0019 (8)0.0007 (8)
N50.0309 (8)0.0378 (9)0.0294 (8)0.0041 (7)0.0007 (7)0.0024 (8)
N60.0511 (11)0.0437 (11)0.0638 (14)0.0126 (9)0.0085 (11)0.0014 (11)
C10.0319 (9)0.0278 (9)0.0260 (9)0.0025 (7)0.0047 (8)0.0026 (8)
C20.0334 (9)0.0296 (10)0.0329 (11)0.0033 (8)0.0005 (8)0.0038 (8)
C30.0343 (10)0.0246 (10)0.0360 (11)0.0031 (8)0.0019 (8)0.0010 (8)
C40.0279 (9)0.0265 (9)0.0309 (10)0.0028 (7)0.0031 (7)0.0001 (8)
C50.0310 (9)0.0277 (10)0.0345 (10)0.0049 (8)0.0007 (9)0.0015 (9)
C60.0356 (9)0.0242 (9)0.0359 (10)0.0022 (8)0.0018 (9)0.0009 (8)
C70.0418 (11)0.0319 (10)0.0270 (10)0.0053 (9)0.0004 (9)0.0031 (9)
C80.0331 (9)0.0294 (10)0.0326 (10)0.0032 (8)0.0003 (9)0.0041 (9)
C90.0325 (9)0.0307 (10)0.0262 (10)0.0017 (8)0.0023 (8)0.0035 (8)
C100.0376 (11)0.0449 (12)0.0284 (10)0.0076 (10)0.0004 (9)0.0014 (10)
C110.0331 (10)0.0447 (12)0.0333 (11)0.0009 (9)0.0011 (9)0.0048 (10)
C120.0343 (10)0.0543 (14)0.0422 (13)0.0087 (10)0.0033 (10)0.0033 (11)
C130.0421 (12)0.0383 (12)0.0526 (14)0.0043 (10)0.0047 (11)0.0062 (12)
Geometric parameters (Å, º) top
O1—N11.226 (2)C3—C41.377 (3)
O2—N11.225 (2)C3—H30.98 (2)
N1—C41.465 (3)C4—C51.388 (3)
N2—N31.346 (2)C5—C61.381 (3)
N2—C81.354 (3)C5—H50.97 (3)
N2—C71.464 (3)C6—H61.00 (2)
N3—N41.309 (3)C7—H7B0.95 (3)
N4—C91.360 (3)C7—H7A1.00 (3)
N5—C131.354 (3)C8—C91.367 (3)
N5—C111.368 (3)C8—H80.97 (3)
N5—C101.465 (3)C9—C101.493 (3)
N6—C131.322 (3)C10—H10A1.00 (3)
N6—C121.371 (3)C10—H10B1.00 (3)
C1—C21.389 (3)C11—C121.351 (3)
C1—C61.394 (3)C11—H110.98 (3)
C1—C71.509 (3)C12—H120.96 (3)
C2—C31.383 (3)C13—H130.99 (3)
C2—H20.97 (2)
O2—N1—O1122.87 (19)C1—C6—H6118.7 (16)
O2—N1—C4118.62 (17)N2—C7—C1111.65 (17)
O1—N1—C4118.51 (16)N2—C7—H7B108.0 (15)
N3—N2—C8110.68 (16)C1—C7—H7B110.9 (15)
N3—N2—C7119.58 (17)N2—C7—H7A106.5 (14)
C8—N2—C7129.69 (17)C1—C7—H7A109.7 (14)
N4—N3—N2107.21 (16)H7B—C7—H7A110 (2)
N3—N4—C9109.13 (16)N2—C8—C9104.62 (17)
C13—N5—C11106.72 (19)N2—C8—H8121.6 (18)
C13—N5—C10127.11 (19)C9—C8—H8133.7 (18)
C11—N5—C10126.05 (19)N4—C9—C8108.36 (17)
C13—N6—C12104.3 (2)N4—C9—C10120.75 (18)
C2—C1—C6119.61 (19)C8—C9—C10130.85 (19)
C2—C1—C7120.89 (18)N5—C10—C9111.25 (18)
C6—C1—C7119.49 (18)N5—C10—H10A108.0 (15)
C3—C2—C1120.49 (19)C9—C10—H10A111.9 (15)
C3—C2—H2121.8 (14)N5—C10—H10B107.5 (15)
C1—C2—H2117.7 (14)C9—C10—H10B110.8 (16)
C4—C3—C2118.59 (18)H10A—C10—H10B107 (2)
C4—C3—H3119.2 (14)C12—C11—N5105.9 (2)
C2—C3—H3122.2 (14)C12—C11—H11133.4 (16)
C3—C4—C5122.51 (19)N5—C11—H11120.7 (16)
C3—C4—N1118.82 (17)C11—C12—N6111.1 (2)
C5—C4—N1118.66 (18)C11—C12—H12127.8 (17)
C6—C5—C4118.09 (19)N6—C12—H12121.1 (17)
C6—C5—H5123.6 (15)N6—C13—N5112.0 (2)
C4—C5—H5118.3 (15)N6—C13—H13128.2 (16)
C5—C6—C1120.70 (18)N5—C13—H13119.8 (16)
C5—C6—H6120.6 (16)
C8—N2—N3—N40.6 (2)C2—C1—C7—N2115.3 (2)
C7—N2—N3—N4178.28 (17)C6—C1—C7—N263.8 (2)
N2—N3—N4—C90.6 (2)N3—N2—C8—C90.3 (2)
C6—C1—C2—C30.8 (3)C7—N2—C8—C9177.69 (19)
C7—C1—C2—C3178.38 (18)N3—N4—C9—C80.5 (2)
C1—C2—C3—C40.0 (3)N3—N4—C9—C10178.35 (19)
C2—C3—C4—C50.8 (3)N2—C8—C9—N40.1 (2)
C2—C3—C4—N1177.84 (17)N2—C8—C9—C10177.7 (2)
O2—N1—C4—C3173.1 (2)C13—N5—C10—C9102.5 (3)
O1—N1—C4—C37.5 (3)C11—N5—C10—C973.0 (3)
O2—N1—C4—C58.2 (3)N4—C9—C10—N565.4 (2)
O1—N1—C4—C5171.22 (19)C8—C9—C10—N5112.0 (2)
C3—C4—C5—C60.8 (3)C13—N5—C11—C120.4 (2)
N1—C4—C5—C6177.84 (19)C10—N5—C11—C12176.6 (2)
C4—C5—C6—C10.0 (3)N5—C11—C12—N60.0 (3)
C2—C1—C6—C50.8 (3)C13—N6—C12—C110.4 (3)
C7—C1—C6—C5178.39 (19)C12—N6—C13—N50.6 (3)
N3—N2—C7—C1102.0 (2)C11—N5—C13—N60.7 (3)
C8—N2—C7—C175.2 (3)C10—N5—C13—N6176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.98 (2)2.55 (2)3.189 (2)123.0 (18)
C7—H7B···N6ii0.95 (3)2.60 (3)3.478 (3)154 (2)
C11—H11···O2iii0.98 (3)2.66 (3)3.535 (3)149 (2)
C6—H6···N3iv1.00 (2)2.54 (3)3.299 (3)133 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+1, z1/2.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMoltzen, E. K., Pedersen, H., Bøgesø, K. P., Meier, E., Frederiksen, K., Sánchez, C. & Løve Lembøl, H. (1994). J. Med. Chem. 37, 4085–4099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOlesen, P. H., Sørensen, A. R., Ursø, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSanghvi, Y. S., Bhattacharya, B. K., Kini, G. D., Matsumoto, S. S., Larson, S. B., Jolley, W. B., Robins, R. K. & Revankar, G. R. (1990). J. Med. Chem. 33, 336–344.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E., Essassi, E. M., Zerzouf, A., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Maroc. Chim. Heterocycl. 15, 1–11.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheremet, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds