organic compounds
4-[(1H-Imidazol-1-yl)methyl]-1-(4-nitrobenzyl)-1H-1,2,3-triazole
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: azzeddinesahbi1982@gmail.com
The title molecule, C13H12N6O2, adopts a slightly twisted zigzag conformation in the crystal, with the dihedral angles between the central triazole ring and the 4-nitrophenyl and imidazole rings being 79.81 (11) and 81.21 (13)°, respectively. The packing features weak C—H⋯O and C—H⋯N hydrogen bonds, as well as unusual N=O⋯π stacking interactions.
Keywords: crystal structure; triazole; imidazole; hydrogen bond.
CCDC reference: 1541939
Structure description
Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of numerous et al. 2004), cytotoxic (Sanghvi et al., 1990) and antibacterial activities (Sebbar et al., 2016). They have also been reported to be inhibitors of glycogen synthase kinase-3 (Olesen et al., 2003) and agonists of muscarine receptors (Moltzen et al., 1994). Herein we report the synthesis of 4-[(1H-imidazol-1-yl)methyl]-1-(4-nitrobenzyl)-1H-1,2,3-triazole by the 1,3-dipolar cycloaddition reaction of 1-(azidomethyl)-4-nitrobenzene with 1-(prop-2-yn-1-yl)-1H-imidazole.
with different biological activities, including antimicrobial (SheremetThe title molecule adopts a slightly twisted, zigzag conformation (Fig. 1) with the dihedral angles between the mean plane of the N2–N4/C8/C9 ring and those of the C1–C6 and N5/N6/C11–C13 rings being, 79.81 (11) and 81.21 (13)°, respectively. The crystal packing features weak C—H⋯O and C—H⋯N hydrogen bonds (Table 1, Figs. 2 and 3). In addition, unusual Cg1⋯Cg2v contacts, where Cg1 is the centroid of the C1–C6 ring and Cg2v is the mid-point of the N1=O2 bond [Cg1⋯Cg2 = 2.540 Å; symmetry code: (v) x, y, z − 1] link molecules into chains along the c-axis direction (Fig. 4). An N—O⋯π interaction is also observed: O2⋯Cg1 = 3.626 (2) Å, N1⋯Cg1 = 3.5578 (19) Å and N1—O2⋯Cg1 = 77.05 (12)°.
Synthesis and crystallization
In a vial fitted with a screw cap, 1-(azidomethyl)-4-nitrobenzene (100 mg, 0.56 mmol) and 1-(prop-2-yn-1-yl)-1H-imidazole (62.5 mg, 0.58 mmol) were added to a mixture of copper(II) sulfate pentahydrate (7 mg, 0.028 mmol), sodium ascorbate (16.6 mg, 0.083 mmol), and β-cyclodextrin (15.9 mg, 0.014 mmol) dissolved in H2O (1 ml) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The resulting mixture was poured into CH2Cl2 (3 ml) and H2O (3 ml) and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (3 ml) three times. The product was obtained as colorless crystals in 94% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1541939
https://doi.org/10.1107/S2414314617005156/sj4100sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617005156/sj4100Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005156/sj4100Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005156/sj4100Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H12N6O2 | Dx = 1.443 Mg m−3 |
Mr = 284.29 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 8050 reflections |
a = 20.3330 (4) Å | θ = 3.8–74.4° |
b = 14.2764 (3) Å | µ = 0.86 mm−1 |
c = 4.5089 (1) Å | T = 150 K |
V = 1308.85 (5) Å3 | Column, colourless |
Z = 4 | 0.12 × 0.06 × 0.04 mm |
F(000) = 592 |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2611 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2410 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 3.8° |
ω scans | h = −25→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −17→17 |
Tmin = 0.88, Tmax = 0.96 | l = −5→5 |
10013 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0321P)2 + 0.151P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.070 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.12 e Å−3 |
2611 reflections | Δρmin = −0.12 e Å−3 |
239 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0044 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.10 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.40535 (8) | 0.03081 (10) | 0.1143 (4) | 0.0449 (4) | |
O2 | 0.34070 (8) | 0.14915 (12) | 0.0656 (6) | 0.0567 (5) | |
N1 | 0.38941 (8) | 0.11157 (12) | 0.1721 (4) | 0.0344 (4) | |
N2 | 0.59199 (8) | 0.39660 (11) | 0.7619 (4) | 0.0284 (3) | |
N3 | 0.57204 (8) | 0.48647 (12) | 0.7668 (5) | 0.0339 (4) | |
N4 | 0.61097 (8) | 0.53343 (11) | 0.5897 (4) | 0.0335 (4) | |
N5 | 0.75335 (8) | 0.57154 (12) | 0.4154 (4) | 0.0327 (4) | |
N6 | 0.80031 (10) | 0.70206 (14) | 0.5784 (6) | 0.0528 (5) | |
H6 | 0.4522 (12) | 0.3802 (17) | 0.622 (7) | 0.049 (7)* | |
C1 | 0.51128 (9) | 0.26847 (13) | 0.7407 (4) | 0.0286 (4) | |
C2 | 0.52185 (10) | 0.17309 (14) | 0.7039 (5) | 0.0320 (4) | |
H2 | 0.5594 (12) | 0.1453 (17) | 0.805 (6) | 0.038 (6)* | |
C3 | 0.48152 (10) | 0.12100 (14) | 0.5201 (5) | 0.0316 (4) | |
H3 | 0.4875 (12) | 0.0537 (16) | 0.492 (6) | 0.039 (6)* | |
C4 | 0.43084 (9) | 0.16574 (13) | 0.3753 (4) | 0.0285 (4) | |
C5 | 0.41831 (10) | 0.26072 (13) | 0.4096 (5) | 0.0311 (4) | |
H5 | 0.3822 (13) | 0.2882 (17) | 0.298 (6) | 0.043 (7)* | |
C6 | 0.45909 (9) | 0.31160 (13) | 0.5940 (5) | 0.0319 (4) | |
C7 | 0.55609 (11) | 0.32640 (15) | 0.9344 (5) | 0.0336 (4) | |
H7B | 0.5873 (12) | 0.2880 (16) | 1.032 (7) | 0.043 (7)* | |
H7A | 0.5293 (12) | 0.3618 (17) | 1.084 (7) | 0.044 (6)* | |
C8 | 0.64394 (9) | 0.38588 (13) | 0.5772 (5) | 0.0317 (4) | |
H8 | 0.6659 (13) | 0.3258 (19) | 0.555 (8) | 0.054 (7)* | |
C9 | 0.65557 (9) | 0.47370 (14) | 0.4683 (4) | 0.0298 (4) | |
C10 | 0.70753 (10) | 0.50886 (16) | 0.2624 (5) | 0.0370 (5) | |
H10A | 0.7336 (12) | 0.4564 (18) | 0.173 (6) | 0.048 (7)* | |
H10B | 0.6876 (13) | 0.5447 (17) | 0.095 (8) | 0.052 (7)* | |
C11 | 0.80043 (10) | 0.54527 (16) | 0.6156 (5) | 0.0371 (5) | |
H11 | 0.8066 (13) | 0.4795 (18) | 0.667 (6) | 0.052 (8)* | |
C12 | 0.82835 (11) | 0.62560 (17) | 0.7119 (6) | 0.0436 (5) | |
H12 | 0.8633 (14) | 0.6326 (19) | 0.854 (8) | 0.061 (9)* | |
C13 | 0.75485 (11) | 0.66629 (16) | 0.4020 (6) | 0.0443 (5) | |
H13 | 0.7231 (14) | 0.7000 (18) | 0.274 (8) | 0.059 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0482 (9) | 0.0308 (8) | 0.0556 (10) | 0.0012 (6) | −0.0044 (8) | −0.0094 (7) |
O2 | 0.0456 (9) | 0.0427 (9) | 0.0819 (14) | 0.0054 (7) | −0.0269 (10) | −0.0052 (10) |
N1 | 0.0338 (8) | 0.0297 (9) | 0.0396 (11) | −0.0019 (7) | −0.0001 (7) | −0.0005 (7) |
N2 | 0.0324 (8) | 0.0256 (8) | 0.0271 (8) | −0.0006 (6) | −0.0003 (7) | −0.0004 (7) |
N3 | 0.0363 (8) | 0.0265 (8) | 0.0388 (9) | 0.0011 (7) | 0.0046 (8) | −0.0026 (8) |
N4 | 0.0355 (8) | 0.0289 (8) | 0.0361 (9) | 0.0012 (7) | 0.0019 (8) | 0.0007 (8) |
N5 | 0.0309 (8) | 0.0378 (9) | 0.0294 (8) | −0.0041 (7) | 0.0007 (7) | 0.0024 (8) |
N6 | 0.0511 (11) | 0.0437 (11) | 0.0638 (14) | −0.0126 (9) | −0.0085 (11) | 0.0014 (11) |
C1 | 0.0319 (9) | 0.0278 (9) | 0.0260 (9) | −0.0025 (7) | 0.0047 (8) | 0.0026 (8) |
C2 | 0.0334 (9) | 0.0296 (10) | 0.0329 (11) | 0.0033 (8) | 0.0005 (8) | 0.0038 (8) |
C3 | 0.0343 (10) | 0.0246 (10) | 0.0360 (11) | 0.0031 (8) | 0.0019 (8) | 0.0010 (8) |
C4 | 0.0279 (9) | 0.0265 (9) | 0.0309 (10) | −0.0028 (7) | 0.0031 (7) | −0.0001 (8) |
C5 | 0.0310 (9) | 0.0277 (10) | 0.0345 (10) | 0.0049 (8) | 0.0007 (9) | 0.0015 (9) |
C6 | 0.0356 (9) | 0.0242 (9) | 0.0359 (10) | 0.0022 (8) | 0.0018 (9) | 0.0009 (8) |
C7 | 0.0418 (11) | 0.0319 (10) | 0.0270 (10) | −0.0053 (9) | −0.0004 (9) | 0.0031 (9) |
C8 | 0.0331 (9) | 0.0294 (10) | 0.0326 (10) | 0.0032 (8) | 0.0003 (9) | −0.0041 (9) |
C9 | 0.0325 (9) | 0.0307 (10) | 0.0262 (10) | −0.0017 (8) | −0.0023 (8) | −0.0035 (8) |
C10 | 0.0376 (11) | 0.0449 (12) | 0.0284 (10) | −0.0076 (10) | 0.0004 (9) | −0.0014 (10) |
C11 | 0.0331 (10) | 0.0447 (12) | 0.0333 (11) | 0.0009 (9) | 0.0011 (9) | 0.0048 (10) |
C12 | 0.0343 (10) | 0.0543 (14) | 0.0422 (13) | −0.0087 (10) | −0.0033 (10) | 0.0033 (11) |
C13 | 0.0421 (12) | 0.0383 (12) | 0.0526 (14) | −0.0043 (10) | −0.0047 (11) | 0.0062 (12) |
O1—N1 | 1.226 (2) | C3—C4 | 1.377 (3) |
O2—N1 | 1.225 (2) | C3—H3 | 0.98 (2) |
N1—C4 | 1.465 (3) | C4—C5 | 1.388 (3) |
N2—N3 | 1.346 (2) | C5—C6 | 1.381 (3) |
N2—C8 | 1.354 (3) | C5—H5 | 0.97 (3) |
N2—C7 | 1.464 (3) | C6—H6 | 1.00 (2) |
N3—N4 | 1.309 (3) | C7—H7B | 0.95 (3) |
N4—C9 | 1.360 (3) | C7—H7A | 1.00 (3) |
N5—C13 | 1.354 (3) | C8—C9 | 1.367 (3) |
N5—C11 | 1.368 (3) | C8—H8 | 0.97 (3) |
N5—C10 | 1.465 (3) | C9—C10 | 1.493 (3) |
N6—C13 | 1.322 (3) | C10—H10A | 1.00 (3) |
N6—C12 | 1.371 (3) | C10—H10B | 1.00 (3) |
C1—C2 | 1.389 (3) | C11—C12 | 1.351 (3) |
C1—C6 | 1.394 (3) | C11—H11 | 0.98 (3) |
C1—C7 | 1.509 (3) | C12—H12 | 0.96 (3) |
C2—C3 | 1.383 (3) | C13—H13 | 0.99 (3) |
C2—H2 | 0.97 (2) | ||
O2—N1—O1 | 122.87 (19) | C1—C6—H6 | 118.7 (16) |
O2—N1—C4 | 118.62 (17) | N2—C7—C1 | 111.65 (17) |
O1—N1—C4 | 118.51 (16) | N2—C7—H7B | 108.0 (15) |
N3—N2—C8 | 110.68 (16) | C1—C7—H7B | 110.9 (15) |
N3—N2—C7 | 119.58 (17) | N2—C7—H7A | 106.5 (14) |
C8—N2—C7 | 129.69 (17) | C1—C7—H7A | 109.7 (14) |
N4—N3—N2 | 107.21 (16) | H7B—C7—H7A | 110 (2) |
N3—N4—C9 | 109.13 (16) | N2—C8—C9 | 104.62 (17) |
C13—N5—C11 | 106.72 (19) | N2—C8—H8 | 121.6 (18) |
C13—N5—C10 | 127.11 (19) | C9—C8—H8 | 133.7 (18) |
C11—N5—C10 | 126.05 (19) | N4—C9—C8 | 108.36 (17) |
C13—N6—C12 | 104.3 (2) | N4—C9—C10 | 120.75 (18) |
C2—C1—C6 | 119.61 (19) | C8—C9—C10 | 130.85 (19) |
C2—C1—C7 | 120.89 (18) | N5—C10—C9 | 111.25 (18) |
C6—C1—C7 | 119.49 (18) | N5—C10—H10A | 108.0 (15) |
C3—C2—C1 | 120.49 (19) | C9—C10—H10A | 111.9 (15) |
C3—C2—H2 | 121.8 (14) | N5—C10—H10B | 107.5 (15) |
C1—C2—H2 | 117.7 (14) | C9—C10—H10B | 110.8 (16) |
C4—C3—C2 | 118.59 (18) | H10A—C10—H10B | 107 (2) |
C4—C3—H3 | 119.2 (14) | C12—C11—N5 | 105.9 (2) |
C2—C3—H3 | 122.2 (14) | C12—C11—H11 | 133.4 (16) |
C3—C4—C5 | 122.51 (19) | N5—C11—H11 | 120.7 (16) |
C3—C4—N1 | 118.82 (17) | C11—C12—N6 | 111.1 (2) |
C5—C4—N1 | 118.66 (18) | C11—C12—H12 | 127.8 (17) |
C6—C5—C4 | 118.09 (19) | N6—C12—H12 | 121.1 (17) |
C6—C5—H5 | 123.6 (15) | N6—C13—N5 | 112.0 (2) |
C4—C5—H5 | 118.3 (15) | N6—C13—H13 | 128.2 (16) |
C5—C6—C1 | 120.70 (18) | N5—C13—H13 | 119.8 (16) |
C5—C6—H6 | 120.6 (16) | ||
C8—N2—N3—N4 | −0.6 (2) | C2—C1—C7—N2 | 115.3 (2) |
C7—N2—N3—N4 | −178.28 (17) | C6—C1—C7—N2 | −63.8 (2) |
N2—N3—N4—C9 | 0.6 (2) | N3—N2—C8—C9 | 0.3 (2) |
C6—C1—C2—C3 | 0.8 (3) | C7—N2—C8—C9 | 177.69 (19) |
C7—C1—C2—C3 | −178.38 (18) | N3—N4—C9—C8 | −0.5 (2) |
C1—C2—C3—C4 | 0.0 (3) | N3—N4—C9—C10 | −178.35 (19) |
C2—C3—C4—C5 | −0.8 (3) | N2—C8—C9—N4 | 0.1 (2) |
C2—C3—C4—N1 | 177.84 (17) | N2—C8—C9—C10 | 177.7 (2) |
O2—N1—C4—C3 | 173.1 (2) | C13—N5—C10—C9 | −102.5 (3) |
O1—N1—C4—C3 | −7.5 (3) | C11—N5—C10—C9 | 73.0 (3) |
O2—N1—C4—C5 | −8.2 (3) | N4—C9—C10—N5 | 65.4 (2) |
O1—N1—C4—C5 | 171.22 (19) | C8—C9—C10—N5 | −112.0 (2) |
C3—C4—C5—C6 | 0.8 (3) | C13—N5—C11—C12 | −0.4 (2) |
N1—C4—C5—C6 | −177.84 (19) | C10—N5—C11—C12 | −176.6 (2) |
C4—C5—C6—C1 | 0.0 (3) | N5—C11—C12—N6 | 0.0 (3) |
C2—C1—C6—C5 | −0.8 (3) | C13—N6—C12—C11 | 0.4 (3) |
C7—C1—C6—C5 | 178.39 (19) | C12—N6—C13—N5 | −0.6 (3) |
N3—N2—C7—C1 | 102.0 (2) | C11—N5—C13—N6 | 0.7 (3) |
C8—N2—C7—C1 | −75.2 (3) | C10—N5—C13—N6 | 176.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.98 (2) | 2.55 (2) | 3.189 (2) | 123.0 (18) |
C7—H7B···N6ii | 0.95 (3) | 2.60 (3) | 3.478 (3) | 154 (2) |
C11—H11···O2iii | 0.98 (3) | 2.66 (3) | 3.535 (3) | 149 (2) |
C6—H6···N3iv | 1.00 (2) | 2.54 (3) | 3.299 (3) | 133 (2) |
Symmetry codes: (i) −x+1, −y, z+1/2; (ii) −x+3/2, y−1/2, z+1/2; (iii) x+1/2, −y+1/2, z+1; (iv) −x+1, −y+1, z−1/2. |
Acknowledgements
The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Moltzen, E. K., Pedersen, H., Bøgesø, K. P., Meier, E., Frederiksen, K., Sánchez, C. & Løve Lembøl, H. (1994). J. Med. Chem. 37, 4085–4099. CrossRef CAS PubMed Web of Science Google Scholar
Olesen, P. H., Sørensen, A. R., Ursø, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sanghvi, Y. S., Bhattacharya, B. K., Kini, G. D., Matsumoto, S. S., Larson, S. B., Jolley, W. B., Robins, R. K. & Revankar, G. R. (1990). J. Med. Chem. 33, 336–344. CSD CrossRef CAS PubMed Web of Science Google Scholar
Sebbar, N. K., Mekhzoum, M. E., Essassi, E. M., Zerzouf, A., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Maroc. Chim. Heterocycl. 15, 1–11. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheremet, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.