organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-{[5-Methyl-2-(propan-2-yl)phen­­oxy]meth­yl}-1-(4-nitro­benz­yl)-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: azzeddinesahbi1982@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 26 March 2017; accepted 4 April 2017; online 7 April 2017)

The asymmetric unit of the title compound, C20H22N4O3, comprises two independent mol­ecules (A and B) with markedly different conformations as the C—H bonds of the imidazole rings point in opposite directions. In the crystal, C—H⋯N hydrogen bonds form chains of mol­ecules extending along the b-axis direction, while C—H⋯O hydrogen bonds form zigzag chains along a. Additional inter­molecular N  O⋯π(ring) contacts form parallel chains of like mol­ecules along a. The structure was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Triazole derivatives are often recognized as precursors in the synthesis of a variety of therapeutic agents. Indeed, heterocyclic compounds containing this motif exhibit anti­cancer activity (Stéphan et al., 1995[Stéphan, F., Etienne, M. C., Wallays, C., Milano, G. & Clergue, F. (1995). Am. J. Med. 99, 685-688.]), and are known to be anti­neoplastic (Passannanti et al.,1998[Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229-1235.]), anti­microbial (Sheremet et al., 2004[Sheremet, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594-595.]) and anti-HIV agents (Velázquez et al., 1998[Velázquez, S., Alvarez, R., Pérez, C., Gago, F., De Clercq, E., Balzarini, J. & Camarasa, M. J. (1998). Antivir. Chem. Chemother. 9, 481-489.]). In this work we have synthesized 4-{[5-Methyl-2-(propan-2-yl)phen­oxy]meth­yl}-1-(4-nitro­benz­yl)-1H-1,2,3-triazole by a 1,3-dipolar cyclo­addition reaction of 4-nitro­benzoyl azide with 1-isopropyl-4-methyl-2-(prop-2-yn-1-yl­oxy)benzene and report its structure here.

The asymmetric unit of the title compound comprises two independent mol­ecules, A and B, with markedly different conformations (Fig. 1[link]). The difference between the two unique mol­ecules lies in the fact that the triazole ring is rotated by approximately 180° about the C7—N2 or C27—N6 bonds so that the C8—H8 and C28—H28 bonds point in diametrically opposite directions, as shown by the N2—C7—C4—C5 and N6—C27—C24—C25 torsion angles of 88.4 (3) and −89.4 (3)° respectively. Inter­estingly other features of the two mol­ecules are quite similar, with the dihedral angles between the N2 and N6 imidazole rings and the corresponding nitro­phenyl rings being 68.94 (9) and 67.37 (9)°, respectively, while those between the same imidazole rings and the C11–C16 and C21–C26 benzene rings are 65.85 (9) and 65.21 (9)°, respectively.

[Figure 1]
Figure 1
The asymmetric unit with labeling scheme and 50% probability ellipsoids. The C8—H8⋯N8 hydrogen bond is shown as a dashed line.

The two unique mol­ecules are linked by a weak C8—H8⋯N8 hydrogen bond and these pairs of mol­ecules are further linked along the b-axis direction by C28—H28⋯N4i hydrogen bonds (Table 1[link] and Fig. 2[link]). A combination of C5—H5⋯O4ii and C25—H25⋯O1iii hydrogen bonds link alternate A and B mol­ecules into zigzag chains along a (Table 1[link], Fig. 3[link]). Additionally, the crystal packing is supplemented by N1 O1⋯π(ring)v [O1⋯centroid of N2–N4/C8/C9 = 3.540 (2) Å; symmetry code: (v) −1 + x, y, z]. These link type A mol­ecules into chains along the a-axis direction. A second and parallel set of chains of B mol­ecules form in an obverse fashion through N5 O4⋯π(ring)vi [O4⋯centroid of N6–N8/C28/C29 = 3.550 (2) Å; symmetry code: (vi) 1 + x, y, z] inter­actions (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N8 0.95 2.43 3.300 (3) 151
C28—H28⋯N4i 0.95 2.45 3.305 (3) 149
C5—H5⋯O4ii 0.95 2.55 3.466 (3) 161
C25—H25⋯O1iii 0.95 2.56 3.330 (3) 138
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Packing viewed along the a-axis direction, showing the chain along the b-axis direction formed by the C—H⋯N hydrogen bonds (dashed lines) [symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z].
[Figure 3]
Figure 3
Packing viewed along the b-axis direction, showing the sheet parallel to the ac plane formed by C—H⋯O hydrogen bonds (dashed lines) [symmetry codes: (iii) −x + 1, −y + 1, −z; (iv) −x + 2, −y + 1, −z].
[Figure 4]
Figure 4
Chains of mol­ecules formed along a by N=O⋯π(ring) contacts (shown as dashed lines).

Synthesis and crystallization

In a vial fitted with a screw cap, nitro­benzyl azide (100 mg, 0.56 mmol) and 1-isopropyl-4-methyl-2-(prop-2-yn-1-yl­oxy)benzene (110 mg, 0.58 mmol) were added to a mixture of copper(II) sulfate penta­hydrate (7 mg, 0.028 mmol), sodium ascorbate (16.6 mg, 0.083 mmol), and β-cyclo­dextrin (15.9 mg, 0.014 mmol) dissolved in H2O (1 ml) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The resulting mixture was poured into CH2Cl2 (3 ml) and H2O (3 ml), and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (3 ml) three times. The product was obtained as colorless crystals in a yield of 90%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C20H22N4O3
Mr 366.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.4118 (3), 10.8934 (4), 18.6996 (7)
α, β, γ (°) 101.629 (1), 91.752 (1), 90.351 (1)
V3) 1876.83 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.22 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.81, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 22212, 11537, 9810
Rint 0.033
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.197, 1.06
No. of reflections 11537
No. of parameters 495
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXTL and CELL_NOW (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016) and CELL_NOW (Sheldrick, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-{[5-Methyl-2-(propan-2-yl)phenoxy]methyl}-1-(4-nitrobenzyl)-1H-1,2,3-triazole top
Crystal data top
C20H22N4O3Z = 4
Mr = 366.41F(000) = 776
Triclinic, P1Dx = 1.297 Mg m3
a = 9.4118 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.8934 (4) ÅCell parameters from 9905 reflections
c = 18.6996 (7) Åθ = 4.1–72.5°
α = 101.629 (1)°µ = 0.73 mm1
β = 91.752 (1)°T = 150 K
γ = 90.351 (1)°Column, colourless
V = 1876.83 (12) Å30.22 × 0.13 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
11537 independent reflections
Radiation source: INCOATEC IµS micro-focus source9810 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.1°
ω scansh = 1111
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1313
Tmin = 0.81, Tmax = 0.92l = 023
22212 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1284P)2 + 0.5216P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
11537 reflectionsΔρmax = 0.34 e Å3
495 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (12)
Special details top

Experimental. Analysis of 2112 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0186 (2)0.6403 (2)0.05682 (12)0.0451 (5)
O20.0124 (2)0.48631 (19)0.11339 (12)0.0416 (5)
O31.01236 (18)0.83073 (17)0.33021 (9)0.0279 (4)
N10.0461 (2)0.5660 (2)0.08658 (12)0.0289 (5)
N20.71275 (19)0.67371 (17)0.15685 (11)0.0212 (4)
N30.7185 (2)0.79683 (19)0.15655 (12)0.0295 (5)
N40.7727 (2)0.85253 (19)0.22071 (12)0.0290 (5)
C10.2027 (2)0.5720 (2)0.08933 (12)0.0220 (5)
C20.2757 (3)0.4906 (2)0.12426 (14)0.0266 (5)
H20.22660.43310.14700.032*
C30.4234 (3)0.4952 (2)0.12530 (13)0.0264 (5)
H30.47640.44010.14890.032*
C40.4939 (2)0.5800 (2)0.09194 (12)0.0205 (5)
C50.4171 (2)0.6616 (2)0.05791 (13)0.0257 (5)
H50.46570.72030.03580.031*
C60.2695 (3)0.6577 (2)0.05611 (13)0.0262 (5)
H60.21590.71270.03260.031*
C70.6549 (2)0.5839 (2)0.09328 (13)0.0254 (5)
H7A0.69160.49940.09460.030*
H7B0.68740.60780.04800.030*
C80.7630 (2)0.6501 (2)0.22044 (12)0.0214 (5)
H80.76980.57110.23440.026*
C90.8023 (2)0.7649 (2)0.26084 (13)0.0216 (5)
C100.8668 (2)0.7957 (2)0.33600 (13)0.0253 (5)
H10A0.81550.86580.36610.030*
H10B0.86110.72210.35940.030*
C111.0938 (2)0.8565 (2)0.39394 (13)0.0231 (5)
C121.2326 (2)0.8995 (2)0.38645 (13)0.0239 (5)
C131.3178 (3)0.9287 (2)0.44992 (14)0.0283 (5)
H131.41180.95910.44700.034*
C141.2696 (3)0.9145 (2)0.51735 (14)0.0295 (5)
H141.33110.93520.55940.035*
C151.1329 (3)0.8707 (2)0.52406 (13)0.0267 (5)
C161.0454 (3)0.8421 (2)0.46120 (14)0.0266 (5)
H160.95130.81230.46450.032*
C171.2829 (3)0.9113 (2)0.31143 (13)0.0268 (5)
H171.20320.94760.28610.032*
C181.4120 (3)0.9978 (3)0.31445 (17)0.0409 (7)
H18A1.49500.95970.33370.061*
H18B1.39321.07870.34640.061*
H18C1.43061.01070.26520.061*
C191.3141 (3)0.7820 (3)0.26560 (14)0.0363 (6)
H19A1.22800.72940.26040.055*
H19B1.39000.74270.28980.055*
H19C1.34420.79090.21720.055*
C201.0772 (3)0.8530 (3)0.59602 (15)0.0331 (6)
H20A1.08930.76550.60050.050*
H20B0.97600.87380.59830.050*
H20C1.12990.90810.63610.050*
O41.4652 (2)0.1501 (2)0.05767 (14)0.0534 (6)
O51.4666 (2)0.0108 (2)0.10798 (14)0.0483 (6)
O60.46802 (17)0.33027 (16)0.33204 (9)0.0274 (4)
N51.4050 (2)0.0711 (2)0.08389 (12)0.0318 (5)
N60.7479 (2)0.17490 (18)0.15999 (11)0.0220 (4)
N70.7423 (2)0.29755 (19)0.15935 (12)0.0289 (5)
N80.6953 (2)0.35348 (19)0.22316 (12)0.0295 (5)
C211.2489 (2)0.0760 (2)0.08802 (13)0.0233 (5)
C221.1811 (3)0.0049 (2)0.12393 (14)0.0269 (5)
H221.23360.06220.14610.032*
C231.0336 (3)0.0007 (2)0.12694 (14)0.0267 (5)
H230.98450.05560.15150.032*
C240.9577 (2)0.0835 (2)0.09428 (12)0.0217 (5)
C251.0299 (2)0.1645 (2)0.05917 (13)0.0251 (5)
H250.97790.22260.03740.030*
C261.1767 (3)0.1619 (2)0.05538 (14)0.0271 (5)
H261.22620.21720.03120.032*
C270.7972 (2)0.0858 (2)0.09618 (13)0.0256 (5)
H27A0.75840.10940.05110.031*
H27B0.76080.00080.09750.031*
C280.7040 (2)0.1506 (2)0.22331 (13)0.0221 (5)
H280.69780.07150.23710.027*
C290.6701 (2)0.2653 (2)0.26358 (13)0.0223 (5)
C300.6138 (2)0.2968 (2)0.33840 (13)0.0249 (5)
H30A0.62180.22370.36230.030*
H30B0.66870.36760.36840.030*
C310.3940 (2)0.3557 (2)0.39575 (13)0.0238 (5)
C320.2544 (3)0.3990 (2)0.38793 (13)0.0250 (5)
C330.1778 (3)0.4283 (2)0.45124 (14)0.0286 (5)
H330.08400.45910.44830.034*
C340.2336 (3)0.4141 (2)0.51889 (14)0.0296 (5)
H340.17750.43500.56090.036*
C350.3703 (3)0.3697 (2)0.52572 (13)0.0271 (5)
C360.4499 (3)0.3416 (2)0.46302 (14)0.0270 (5)
H360.54420.31220.46650.032*
C370.1960 (3)0.4112 (2)0.31303 (13)0.0272 (5)
H370.27340.44780.28810.033*
C380.1579 (3)0.2821 (3)0.26654 (14)0.0359 (6)
H38A0.12490.29150.21770.054*
H38B0.08230.24330.28970.054*
H38C0.24200.22890.26240.054*
C390.0688 (3)0.4979 (3)0.31605 (16)0.0397 (7)
H39A0.09370.57950.34690.060*
H39B0.01180.46100.33650.060*
H39C0.04280.50900.26660.060*
C400.4336 (3)0.3527 (3)0.59797 (14)0.0337 (6)
H40A0.41880.26580.60320.051*
H40B0.38750.40940.63770.051*
H40C0.53570.37180.60010.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (9)0.0650 (14)0.0571 (13)0.0067 (9)0.0009 (9)0.0332 (11)
O20.0242 (9)0.0456 (12)0.0578 (13)0.0069 (8)0.0084 (9)0.0164 (10)
O30.0226 (8)0.0359 (9)0.0249 (9)0.0091 (7)0.0044 (7)0.0069 (7)
N10.0197 (10)0.0365 (12)0.0301 (11)0.0008 (8)0.0016 (8)0.0058 (9)
N20.0165 (8)0.0209 (9)0.0264 (10)0.0024 (7)0.0017 (7)0.0059 (7)
N30.0297 (11)0.0221 (10)0.0380 (12)0.0030 (8)0.0087 (9)0.0108 (9)
N40.0301 (11)0.0202 (10)0.0362 (12)0.0030 (8)0.0091 (9)0.0060 (8)
C10.0170 (10)0.0266 (11)0.0208 (11)0.0014 (8)0.0005 (8)0.0012 (9)
C20.0257 (12)0.0275 (12)0.0282 (12)0.0033 (9)0.0024 (9)0.0098 (10)
C30.0238 (11)0.0288 (12)0.0286 (12)0.0006 (9)0.0024 (9)0.0114 (10)
C40.0162 (10)0.0232 (11)0.0202 (11)0.0010 (8)0.0014 (8)0.0001 (8)
C50.0221 (11)0.0280 (12)0.0283 (12)0.0036 (9)0.0003 (9)0.0090 (10)
C60.0222 (11)0.0288 (12)0.0296 (12)0.0018 (9)0.0009 (9)0.0108 (10)
C70.0167 (11)0.0319 (12)0.0253 (12)0.0010 (9)0.0012 (8)0.0010 (9)
C80.0201 (10)0.0199 (11)0.0253 (11)0.0014 (8)0.0018 (8)0.0076 (9)
C90.0179 (10)0.0188 (10)0.0282 (12)0.0023 (8)0.0021 (9)0.0053 (9)
C100.0197 (11)0.0277 (12)0.0281 (12)0.0067 (9)0.0028 (9)0.0052 (9)
C110.0223 (11)0.0223 (11)0.0238 (12)0.0020 (9)0.0047 (9)0.0034 (9)
C120.0230 (11)0.0224 (11)0.0257 (12)0.0020 (9)0.0023 (9)0.0038 (9)
C130.0214 (11)0.0312 (13)0.0313 (13)0.0033 (9)0.0042 (9)0.0045 (10)
C140.0283 (12)0.0309 (13)0.0279 (13)0.0016 (10)0.0063 (10)0.0041 (10)
C150.0301 (12)0.0245 (12)0.0254 (12)0.0016 (10)0.0006 (10)0.0046 (9)
C160.0249 (12)0.0246 (12)0.0301 (13)0.0025 (9)0.0005 (9)0.0050 (10)
C170.0269 (12)0.0293 (12)0.0238 (12)0.0050 (10)0.0026 (9)0.0048 (9)
C180.0355 (14)0.0487 (17)0.0402 (16)0.0145 (13)0.0024 (12)0.0128 (13)
C190.0460 (16)0.0378 (15)0.0233 (13)0.0014 (12)0.0020 (11)0.0016 (11)
C200.0355 (14)0.0377 (14)0.0277 (13)0.0008 (11)0.0004 (10)0.0107 (11)
O40.0243 (10)0.0775 (17)0.0696 (15)0.0073 (10)0.0044 (10)0.0417 (13)
O50.0241 (9)0.0473 (12)0.0762 (16)0.0072 (9)0.0005 (10)0.0187 (11)
O60.0229 (8)0.0355 (9)0.0243 (9)0.0086 (7)0.0066 (7)0.0064 (7)
N50.0211 (10)0.0402 (12)0.0333 (12)0.0020 (9)0.0024 (8)0.0052 (10)
N60.0188 (9)0.0215 (9)0.0261 (10)0.0024 (7)0.0057 (7)0.0053 (8)
N70.0312 (11)0.0226 (10)0.0357 (12)0.0042 (8)0.0106 (9)0.0106 (8)
N80.0330 (11)0.0214 (10)0.0357 (12)0.0032 (8)0.0120 (9)0.0078 (8)
C210.0168 (11)0.0270 (12)0.0245 (11)0.0002 (9)0.0020 (8)0.0014 (9)
C220.0254 (12)0.0258 (12)0.0310 (13)0.0032 (9)0.0019 (9)0.0091 (10)
C230.0237 (11)0.0288 (12)0.0297 (12)0.0015 (9)0.0043 (9)0.0100 (10)
C240.0204 (11)0.0220 (11)0.0213 (11)0.0014 (8)0.0035 (8)0.0006 (8)
C250.0219 (11)0.0261 (12)0.0282 (12)0.0022 (9)0.0012 (9)0.0072 (9)
C260.0247 (12)0.0285 (12)0.0294 (12)0.0030 (9)0.0030 (9)0.0089 (10)
C270.0176 (11)0.0299 (12)0.0264 (12)0.0013 (9)0.0027 (9)0.0013 (9)
C280.0217 (11)0.0189 (11)0.0270 (12)0.0010 (8)0.0033 (9)0.0072 (9)
C290.0188 (10)0.0207 (11)0.0284 (12)0.0006 (8)0.0040 (9)0.0067 (9)
C300.0219 (11)0.0251 (12)0.0277 (12)0.0054 (9)0.0045 (9)0.0046 (9)
C310.0235 (11)0.0220 (11)0.0256 (12)0.0017 (9)0.0071 (9)0.0030 (9)
C320.0253 (11)0.0233 (11)0.0274 (12)0.0005 (9)0.0040 (9)0.0067 (9)
C330.0228 (11)0.0301 (13)0.0323 (13)0.0032 (9)0.0067 (10)0.0041 (10)
C340.0285 (12)0.0329 (13)0.0274 (13)0.0001 (10)0.0087 (10)0.0050 (10)
C350.0302 (12)0.0242 (12)0.0272 (13)0.0036 (10)0.0032 (10)0.0056 (9)
C360.0264 (12)0.0251 (12)0.0304 (13)0.0033 (9)0.0048 (9)0.0071 (9)
C370.0239 (11)0.0312 (13)0.0275 (12)0.0035 (10)0.0041 (9)0.0074 (10)
C380.0452 (16)0.0371 (15)0.0242 (13)0.0022 (12)0.0012 (11)0.0041 (11)
C390.0363 (15)0.0492 (17)0.0354 (15)0.0141 (13)0.0006 (12)0.0127 (13)
C400.0363 (14)0.0387 (14)0.0270 (13)0.0013 (11)0.0016 (10)0.0086 (11)
Geometric parameters (Å, º) top
O1—N11.226 (3)O4—N51.218 (3)
O2—N11.222 (3)O5—N51.220 (3)
O3—C111.376 (3)O6—C311.379 (3)
O3—C101.433 (3)O6—C301.429 (3)
N1—C11.473 (3)N5—C211.474 (3)
N2—C81.339 (3)N6—N71.340 (3)
N2—N31.343 (3)N6—C281.341 (3)
N2—C71.467 (3)N6—C271.468 (3)
N3—N41.316 (3)N7—N81.316 (3)
N4—C91.353 (3)N8—C291.360 (3)
C1—C21.378 (3)C21—C221.376 (3)
C1—C61.380 (3)C21—C261.387 (3)
C2—C31.390 (3)C22—C231.391 (3)
C2—H20.9500C22—H220.9500
C3—C41.390 (3)C23—C241.389 (3)
C3—H30.9500C23—H230.9500
C4—C51.388 (3)C24—C251.387 (3)
C4—C71.514 (3)C24—C271.513 (3)
C5—C61.389 (3)C25—C261.385 (3)
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H260.9500
C7—H7A0.9900C27—H27A0.9900
C7—H7B0.9900C27—H27B0.9900
C8—C91.367 (3)C28—C291.368 (3)
C8—H80.9500C28—H280.9500
C9—C101.487 (3)C29—C301.487 (3)
C10—H10A0.9900C30—H30A0.9900
C10—H10B0.9900C30—H30B0.9900
C11—C161.388 (4)C31—C361.386 (3)
C11—C121.406 (3)C31—C321.412 (3)
C12—C131.392 (3)C32—C331.388 (3)
C12—C171.523 (3)C32—C371.520 (3)
C13—C141.390 (4)C33—C341.393 (4)
C13—H130.9500C33—H330.9500
C14—C151.388 (4)C34—C351.388 (4)
C14—H140.9500C34—H340.9500
C15—C161.395 (4)C35—C361.394 (3)
C15—C201.506 (4)C35—C401.506 (4)
C16—H160.9500C36—H360.9500
C17—C181.526 (3)C37—C391.525 (4)
C17—C191.530 (4)C37—C381.531 (4)
C17—H171.0000C37—H371.0000
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
C19—H19A0.9800C39—H39A0.9800
C19—H19B0.9800C39—H39B0.9800
C19—H19C0.9800C39—H39C0.9800
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C11—O3—C10116.88 (18)C31—O6—C30116.70 (18)
O2—N1—O1123.4 (2)O4—N5—O5123.7 (2)
O2—N1—C1118.3 (2)O4—N5—C21118.2 (2)
O1—N1—C1118.2 (2)O5—N5—C21118.1 (2)
C8—N2—N3111.29 (19)N7—N6—C28111.59 (19)
C8—N2—C7127.9 (2)N7—N6—C27120.4 (2)
N3—N2—C7120.77 (19)C28—N6—C27128.1 (2)
N4—N3—N2106.60 (19)N8—N7—N6106.76 (19)
N3—N4—C9109.07 (19)N7—N8—C29108.79 (19)
C2—C1—C6123.0 (2)C22—C21—C26122.8 (2)
C2—C1—N1118.4 (2)C22—C21—N5118.7 (2)
C6—C1—N1118.6 (2)C26—C21—N5118.5 (2)
C1—C2—C3118.0 (2)C21—C22—C23118.4 (2)
C1—C2—H2121.0C21—C22—H22120.8
C3—C2—H2121.0C23—C22—H22120.8
C2—C3—C4120.4 (2)C24—C23—C22120.4 (2)
C2—C3—H3119.8C24—C23—H23119.8
C4—C3—H3119.8C22—C23—H23119.8
C5—C4—C3120.1 (2)C25—C24—C23119.6 (2)
C5—C4—C7119.9 (2)C25—C24—C27120.1 (2)
C3—C4—C7119.9 (2)C23—C24—C27120.2 (2)
C4—C5—C6120.1 (2)C26—C25—C24121.0 (2)
C4—C5—H5119.9C26—C25—H25119.5
C6—C5—H5119.9C24—C25—H25119.5
C1—C6—C5118.3 (2)C25—C26—C21117.8 (2)
C1—C6—H6120.8C25—C26—H26121.1
C5—C6—H6120.8C21—C26—H26121.1
N2—C7—C4111.59 (18)N6—C27—C24111.66 (18)
N2—C7—H7A109.3N6—C27—H27A109.3
C4—C7—H7A109.3C24—C27—H27A109.3
N2—C7—H7B109.3N6—C27—H27B109.3
C4—C7—H7B109.3C24—C27—H27B109.3
H7A—C7—H7B108.0H27A—C27—H27B107.9
N2—C8—C9104.7 (2)N6—C28—C29104.4 (2)
N2—C8—H8127.7N6—C28—H28127.8
C9—C8—H8127.7C29—C28—H28127.8
N4—C9—C8108.4 (2)N8—C29—C28108.4 (2)
N4—C9—C10123.1 (2)N8—C29—C30122.7 (2)
C8—C9—C10128.5 (2)C28—C29—C30128.9 (2)
O3—C10—C9107.65 (19)O6—C30—C29107.88 (19)
O3—C10—H10A110.2O6—C30—H30A110.1
C9—C10—H10A110.2C29—C30—H30A110.1
O3—C10—H10B110.2O6—C30—H30B110.1
C9—C10—H10B110.2C29—C30—H30B110.1
H10A—C10—H10B108.5H30A—C30—H30B108.4
O3—C11—C16123.7 (2)O6—C31—C36123.8 (2)
O3—C11—C12114.8 (2)O6—C31—C32114.8 (2)
C16—C11—C12121.4 (2)C36—C31—C32121.5 (2)
C13—C12—C11116.6 (2)C33—C32—C31116.4 (2)
C13—C12—C17123.5 (2)C33—C32—C37123.7 (2)
C11—C12—C17119.9 (2)C31—C32—C37119.9 (2)
C14—C13—C12122.1 (2)C32—C33—C34122.2 (2)
C14—C13—H13119.0C32—C33—H33118.9
C12—C13—H13119.0C34—C33—H33118.9
C15—C14—C13120.9 (2)C35—C34—C33120.8 (2)
C15—C14—H14119.6C35—C34—H34119.6
C13—C14—H14119.6C33—C34—H34119.6
C14—C15—C16117.9 (2)C34—C35—C36117.9 (2)
C14—C15—C20122.5 (2)C34—C35—C40122.2 (2)
C16—C15—C20119.6 (2)C36—C35—C40120.0 (2)
C11—C16—C15121.1 (2)C31—C36—C35121.2 (2)
C11—C16—H16119.5C31—C36—H36119.4
C15—C16—H16119.5C35—C36—H36119.4
C12—C17—C18113.6 (2)C32—C37—C39113.5 (2)
C12—C17—C19110.4 (2)C32—C37—C38110.7 (2)
C18—C17—C19110.1 (2)C39—C37—C38110.2 (2)
C12—C17—H17107.5C32—C37—H37107.4
C18—C17—H17107.5C39—C37—H37107.4
C19—C17—H17107.5C38—C37—H37107.4
C17—C18—H18A109.5C37—C38—H38A109.5
C17—C18—H18B109.5C37—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C17—C18—H18C109.5C37—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C17—C19—H19A109.5C37—C39—H39A109.5
C17—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C17—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C15—C20—H20A109.5C35—C40—H40A109.5
C15—C20—H20B109.5C35—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C15—C20—H20C109.5C35—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C8—N2—N3—N40.2 (3)C28—N6—N7—N80.5 (3)
C7—N2—N3—N4179.00 (19)C27—N6—N7—N8179.72 (19)
N2—N3—N4—C90.7 (3)N6—N7—N8—C290.6 (3)
O2—N1—C1—C22.3 (3)O4—N5—C21—C22173.7 (3)
O1—N1—C1—C2178.5 (2)O5—N5—C21—C225.2 (4)
O2—N1—C1—C6176.9 (2)O4—N5—C21—C266.4 (4)
O1—N1—C1—C62.3 (3)O5—N5—C21—C26174.7 (2)
C6—C1—C2—C30.5 (4)C26—C21—C22—C230.5 (4)
N1—C1—C2—C3178.7 (2)N5—C21—C22—C23179.3 (2)
C1—C2—C3—C40.1 (4)C21—C22—C23—C240.0 (4)
C2—C3—C4—C50.6 (4)C22—C23—C24—C250.7 (4)
C2—C3—C4—C7179.9 (2)C22—C23—C24—C27178.6 (2)
C3—C4—C5—C60.9 (4)C23—C24—C25—C260.8 (4)
C7—C4—C5—C6179.6 (2)C27—C24—C25—C26178.5 (2)
C2—C1—C6—C50.2 (4)C24—C25—C26—C210.2 (4)
N1—C1—C6—C5179.0 (2)C22—C21—C26—C250.5 (4)
C4—C5—C6—C10.5 (4)N5—C21—C26—C25179.4 (2)
C8—N2—C7—C498.3 (3)N7—N6—C27—C2480.7 (3)
N3—N2—C7—C480.7 (3)C25—C24—C27—N689.4 (3)
C5—C4—C7—N288.4 (3)C23—C24—C27—N691.3 (3)
C3—C4—C7—N291.0 (3)N7—N6—C28—C290.2 (3)
N3—N2—C8—C90.4 (3)C27—N6—C28—C29179.9 (2)
C7—N2—C8—C9179.5 (2)N7—N8—C29—C280.5 (3)
N3—N4—C9—C80.9 (3)N7—N8—C29—C30179.0 (2)
N3—N4—C9—C10179.1 (2)N6—C28—C29—N80.2 (3)
N2—C8—C9—N40.8 (3)N6—C28—C29—C30179.2 (2)
N2—C8—C9—C10179.2 (2)C31—O6—C30—C29176.28 (19)
C11—O3—C10—C9176.57 (19)N8—C29—C30—O671.6 (3)
N4—C9—C10—O371.7 (3)C28—C29—C30—O6107.8 (3)
C8—C9—C10—O3108.3 (3)C30—O6—C31—C364.9 (3)
C10—O3—C11—C164.6 (3)C30—O6—C31—C32174.7 (2)
C10—O3—C11—C12175.4 (2)O6—C31—C32—C33178.6 (2)
O3—C11—C12—C13179.0 (2)C36—C31—C32—C331.0 (4)
C16—C11—C12—C131.0 (4)O6—C31—C32—C371.5 (3)
O3—C11—C12—C171.4 (3)C36—C31—C32—C37179.0 (2)
C16—C11—C12—C17178.6 (2)C31—C32—C33—C341.1 (4)
C11—C12—C13—C140.9 (4)C37—C32—C33—C34178.9 (2)
C17—C12—C13—C14178.7 (2)C32—C33—C34—C350.2 (4)
C12—C13—C14—C150.2 (4)C33—C34—C35—C360.8 (4)
C13—C14—C15—C160.4 (4)C33—C34—C35—C40179.7 (2)
C13—C14—C15—C20179.4 (2)O6—C31—C36—C35179.5 (2)
O3—C11—C16—C15179.6 (2)C32—C31—C36—C350.0 (4)
C12—C11—C16—C150.4 (4)C34—C35—C36—C310.9 (4)
C14—C15—C16—C110.3 (4)C40—C35—C36—C31179.6 (2)
C20—C15—C16—C11179.5 (2)C33—C32—C37—C3919.6 (3)
C13—C12—C17—C1819.9 (4)C31—C32—C37—C39160.4 (2)
C11—C12—C17—C18160.5 (2)C33—C32—C37—C38104.8 (3)
C13—C12—C17—C19104.3 (3)C31—C32—C37—C3875.1 (3)
C11—C12—C17—C1975.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N80.952.433.300 (3)151
C28—H28···N4i0.952.453.305 (3)149
C5—H5···O4ii0.952.553.466 (3)161
C25—H25···O1iii0.952.563.330 (3)138
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPassannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229–1235.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheremet, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595.  Web of Science CrossRef CAS Google Scholar
First citationStéphan, F., Etienne, M. C., Wallays, C., Milano, G. & Clergue, F. (1995). Am. J. Med. 99, 685–688.  PubMed Web of Science Google Scholar
First citationVelázquez, S., Alvarez, R., Pérez, C., Gago, F., De Clercq, E., Balzarini, J. & Camarasa, M. J. (1998). Antivir. Chem. Chemother. 9, 481–489.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds