organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 3-(2,5-dimeth­­oxy-3,4,6-tri­methyl­phen­yl)propano­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by A. J. Lough, University of Toronto, Canada (Received 28 March 2017; accepted 30 March 2017; online 4 April 2017)

In the title compound, C15H22O4, the fully substituted benzene ring carries a methyl propano­ate, two meth­oxy and three methyl substituents. Both meth­oxy substituents are almost orthogonal to the benzene ring plane. The methyl propano­ate group is almost planar, r.m.s. deviation 0.0138 Å, and is inclined to the benzene ring plane by 80.26 (14)°. In the crystal, C—H⋯O hydrogen bonds form head-to-tail chains of mol­ecules along the b-axis direction that are supported by very weak C—H⋯π(ring) contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, Fig. 1[link], is an inter­mediate in the synthesis of di­meth­oxy­benzene-appended acrylate and methacrylate monomers (Goswami et al., 2017[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2017). Acta Cryst. E73, 658-663.]). The fully substituted benzene ring carries a methyl propano­ate, two meth­oxy and three methyl substituents. The meth­oxy substituents are para to each other and lie almost at right angles to the benzene ring in a cis conformation; the C2/O2/C21 and C5/O5/C51 planes are inclined to the benzene ring plane by 83.7 (3) and 84.8 (3)°, respectively, and overall present a C21–O2⋯O5–C51 torsion angle of approximately 11.57°. The C1/C7/C8/C9/O9/O91/C91 methyl propano­ate group is almost planar, r.m.s. deviation 0.0138 Å; the dihedral angle between this plane and that of the benzene ring is 80.26 (14)°.

[Figure 1]
Figure 1
The structure of the title compound showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, C41—H41B⋯O91 and C41—H41C⋯O9 hydrogen bonds, supported by very weak C8—H8ACg contacts form chains of mol­ecules arranged in a head-to-tail fashion along the b axis, Fig. 2[link] and Table 1[link]. No significant additional contacts are found between adjacent chains that stack the mol­ecules along the b-axis direction, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41B⋯O91i 0.98 2.59 3.205 (6) 121
C41—H41C⋯O9ii 0.98 2.41 3.392 (5) 175
C8—H8ACgii 0.99 3.15 3.763 (6) 121
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
Chains of mol­ecules along the b axis with hydrogen bonds drawn as dashed lines. Ring centroids are shown as red spheres and C—H⋯π(ring) contacts are drawn as green dotted lines.
[Figure 3]
Figure 3
Overall packing of the title compound viewed along the b-axis direction.

Structures of compounds with 2,5-dimeth­oxy-3,4,6-trimethyl-substituted benzene rings are rare with only two entries (Wickramasinhage et al., 2016[Wickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.]; Wiedenfeld et al., 2003[Wiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700-o702.]) found in the CSD (Version 5.37, November 2015 with three updates; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In addition, we have recently reported the structure of a third related compound, 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate (Goswami et al., 2017[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2017). Acta Cryst. E73, 658-663.]).

Synthesis and crystallization

Synthesis is by methyl­ation of 6-hy­droxy-5,7,8-tri­methyl­chroman-2-one (Goswami et al., 2011[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566-o1567.]) as reported previously (Goswami et al., 2017[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2017). Acta Cryst. E73, 658-663.]). Crystals for this study were obtained by slow crystallization of the pure liquid at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. With no heavy atoms in the mol­ecule, the absolute structure could not be determined reliably.

Table 2
Experimental details

Crystal data
Chemical formula C15H22O4
Mr 266.32
Crystal system, space group Monoclinic, P21
Temperature (K) 92
a, b, c (Å) 8.7453 (13), 8.6888 (10), 9.2511 (11)
β (°) 95.936 (8)
V3) 699.19 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.08 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 5680, 1929, 1781
Rint 0.042
θmax (°) 23.0
(sin θ/λ)max−1) 0.549
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.09
No. of reflections 1929
No. of parameters 178
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.20
Absolute structure Flack x determined using 713 quotients [(I+)−(I)]/[(I+)+(I)] Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.4 (10)
Computer programs: APEX2 and (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010).

Methyl 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propanoate top
Crystal data top
C15H22O4F(000) = 288
Mr = 266.32Dx = 1.265 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.7453 (13) ÅCell parameters from 1870 reflections
b = 8.6888 (10) Åθ = 2.3–22.9°
c = 9.2511 (11) ŵ = 0.09 mm1
β = 95.936 (8)°T = 92 K
V = 699.19 (16) Å3Needle, colourless
Z = 20.42 × 0.08 × 0.07 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
φ and ω scansθmax = 23.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.660, Tmax = 0.745k = 99
5680 measured reflectionsl = 910
1929 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.026P)2 + 0.2556P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.14 e Å3
1929 reflectionsΔρmin = 0.20 e Å3
178 parametersAbsolute structure: Flack x determined using 713 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al. (2013)
1 restraintAbsolute structure parameter: 0.4 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5363 (5)0.2874 (4)1.0124 (4)0.0200 (10)
C20.3827 (5)0.3202 (5)0.9690 (4)0.0182 (9)
O20.3348 (3)0.3264 (3)0.8198 (3)0.0230 (7)
C210.2666 (6)0.1845 (5)0.7645 (5)0.0293 (12)
H21A0.34030.10030.78400.044*
H21B0.23890.19360.65950.044*
H21C0.17410.16310.81250.044*
C30.2758 (5)0.3498 (4)1.0677 (4)0.0187 (10)
C310.1112 (5)0.3877 (6)1.0153 (5)0.0264 (10)
H31A0.10330.41370.91170.040*
H31B0.07730.47551.07020.040*
H31C0.04590.29851.02980.040*
C40.3252 (5)0.3437 (4)1.2163 (4)0.0197 (10)
C410.2135 (5)0.3755 (5)1.3269 (4)0.0236 (10)
H41A0.26160.34901.42420.035*
H41B0.12070.31321.30430.035*
H41C0.18590.48481.32410.035*
C50.4781 (5)0.3086 (5)1.2598 (4)0.0187 (10)
O50.5276 (4)0.3041 (3)1.4082 (3)0.0249 (8)
C510.5258 (6)0.1493 (5)1.4649 (5)0.0298 (12)
H51A0.41980.11121.45710.045*
H51B0.56840.14931.56720.045*
H51C0.58800.08241.40900.045*
C60.5844 (5)0.2821 (4)1.1611 (4)0.0199 (10)
C610.7503 (5)0.2498 (6)1.2148 (5)0.0268 (11)
H6A0.76640.26671.32000.040*
H61B0.81710.31901.16610.040*
H61C0.77490.14281.19300.040*
C70.6461 (5)0.2592 (5)0.8990 (5)0.0213 (10)
H7A0.59290.19940.81780.026*
H7B0.73410.19720.94250.026*
C80.7060 (5)0.4088 (5)0.8402 (5)0.0222 (10)
H8A0.61810.46990.79510.027*
H8B0.75730.46950.92190.027*
C90.8177 (5)0.3819 (5)0.7297 (4)0.0209 (10)
O90.8613 (4)0.2584 (3)0.6916 (3)0.0284 (8)
O910.8665 (4)0.5155 (3)0.6762 (3)0.0253 (8)
C910.9723 (6)0.4994 (5)0.5678 (5)0.0262 (11)
H91A1.06480.44540.60990.039*
H91B1.00070.60160.53450.039*
H91C0.92350.44030.48540.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.015 (2)0.023 (2)0.0006 (19)0.007 (2)0.0047 (19)
C20.020 (2)0.0145 (19)0.020 (2)0.002 (2)0.0022 (18)0.0028 (19)
O20.0250 (18)0.0244 (16)0.0191 (16)0.0028 (14)0.0005 (13)0.0022 (13)
C210.031 (3)0.029 (3)0.028 (3)0.002 (2)0.001 (2)0.001 (2)
C30.017 (2)0.014 (2)0.025 (2)0.0024 (18)0.0051 (19)0.0043 (17)
C310.022 (3)0.027 (2)0.030 (3)0.002 (2)0.005 (2)0.002 (2)
C40.020 (2)0.014 (2)0.026 (2)0.0007 (18)0.009 (2)0.0005 (18)
C410.023 (3)0.021 (2)0.029 (2)0.004 (2)0.010 (2)0.002 (2)
C50.024 (3)0.014 (2)0.018 (2)0.002 (2)0.0034 (19)0.0021 (19)
O50.032 (2)0.0235 (16)0.0185 (16)0.0000 (15)0.0019 (14)0.0024 (14)
C510.037 (3)0.030 (3)0.022 (3)0.001 (2)0.000 (2)0.002 (2)
C60.019 (3)0.017 (2)0.023 (2)0.0027 (19)0.002 (2)0.0019 (18)
C610.026 (3)0.030 (2)0.024 (2)0.001 (2)0.001 (2)0.000 (2)
C70.021 (3)0.020 (2)0.024 (2)0.0018 (19)0.006 (2)0.0014 (18)
C80.026 (3)0.018 (2)0.024 (2)0.000 (2)0.008 (2)0.0035 (19)
C90.018 (2)0.022 (2)0.022 (2)0.003 (2)0.0018 (19)0.001 (2)
O90.033 (2)0.0203 (19)0.0343 (19)0.0004 (15)0.0155 (16)0.0031 (14)
O910.030 (2)0.0189 (17)0.0286 (18)0.0002 (14)0.0135 (15)0.0040 (14)
C910.030 (3)0.027 (2)0.024 (2)0.002 (2)0.011 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.391 (6)O5—C511.444 (5)
C1—C61.397 (6)C51—H51A0.9800
C1—C71.513 (6)C51—H51B0.9800
C2—C31.397 (6)C51—H51C0.9800
C2—O21.402 (5)C6—C611.511 (6)
O2—C211.440 (5)C61—H6A0.9800
C21—H21A0.9800C61—H61B0.9800
C21—H21B0.9800C61—H61C0.9800
C21—H21C0.9800C7—C81.522 (6)
C3—C41.399 (6)C7—H7A0.9900
C3—C311.507 (6)C7—H7B0.9900
C31—H31A0.9800C8—C91.503 (6)
C31—H31B0.9800C8—H8A0.9900
C31—H31C0.9800C8—H8B0.9900
C4—C51.390 (6)C9—O91.203 (5)
C4—C411.511 (6)C9—O911.348 (5)
C41—H41A0.9800O91—C911.440 (5)
C41—H41B0.9800C91—H91A0.9800
C41—H41C0.9800C91—H91B0.9800
C5—C61.388 (6)C91—H91C0.9800
C5—O51.397 (5)
C2—C1—C6118.3 (4)O5—C51—H51B109.5
C2—C1—C7119.8 (4)H51A—C51—H51B109.5
C6—C1—C7121.9 (4)O5—C51—H51C109.5
C1—C2—C3122.7 (4)H51A—C51—H51C109.5
C1—C2—O2118.2 (4)H51B—C51—H51C109.5
C3—C2—O2119.0 (4)C5—C6—C1119.3 (4)
C2—O2—C21112.8 (3)C5—C6—C61120.0 (4)
O2—C21—H21A109.5C1—C6—C61120.7 (4)
O2—C21—H21B109.5C6—C61—H6A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
O2—C21—H21C109.5H6A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H6A—C61—H61C109.5
C2—C3—C4118.4 (4)H61B—C61—H61C109.5
C2—C3—C31120.8 (4)C1—C7—C8112.1 (3)
C4—C3—C31120.8 (4)C1—C7—H7A109.2
C3—C31—H31A109.5C8—C7—H7A109.2
C3—C31—H31B109.5C1—C7—H7B109.2
H31A—C31—H31B109.5C8—C7—H7B109.2
C3—C31—H31C109.5H7A—C7—H7B107.9
H31A—C31—H31C109.5C9—C8—C7112.5 (4)
H31B—C31—H31C109.5C9—C8—H8A109.1
C5—C4—C3118.9 (4)C7—C8—H8A109.1
C5—C4—C41120.9 (4)C9—C8—H8B109.1
C3—C4—C41120.2 (4)C7—C8—H8B109.1
C4—C41—H41A109.5H8A—C8—H8B107.8
C4—C41—H41B109.5O9—C9—O91122.6 (4)
H41A—C41—H41B109.5O9—C9—C8125.8 (4)
C4—C41—H41C109.5O91—C9—C8111.6 (4)
H41A—C41—H41C109.5C9—O91—C91115.0 (3)
H41B—C41—H41C109.5O91—C91—H91A109.5
C6—C5—C4122.3 (4)O91—C91—H91B109.5
C6—C5—O5118.8 (4)H91A—C91—H91B109.5
C4—C5—O5118.8 (4)O91—C91—H91C109.5
C5—O5—C51111.6 (3)H91A—C91—H91C109.5
O5—C51—H51A109.5H91B—C91—H91C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C41—H41B···O91i0.982.593.205 (6)121
C41—H41C···O9ii0.982.413.392 (5)175
C8—H8A···Cgii0.993.153.763 (6)121
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

Funding information

Funding for this research was provided by: NZ Ministry of Business, Innovation and Employment Science Investment Fund (award No. UOOX1206).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2017). Acta Cryst. E73, 658–663.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.  Google Scholar
First citationWiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds