organic compounds
1,4-Di-n-octyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elbourakadi25@gmail.com
In the title compound, C24H38N2O2, the heterocyclic ring (r.m.s. = 0.015 Å) deviates from planarity to a greater extent than the benzene ring (r.m.s. deviation = 0.007 Å). In the crystal, the molecules pack to form polar and non-polar regions. The major intermolecular interaction appears to be complementary π-stacking between oppositely oriented tetrahydroquinoxaline units.
Keywords: crystal structure; π-stacking; quinoxaline.
CCDC reference: 1542476
Structure description
Quinoxaline derivatives are known as antagonists for the excitatory system (Fray et al., 2001), anticonvulsants, (De Sarro et al., 2003) and as antibacterial and antifungal agents (Tandon et al., 2006; Kotharkar & Shinde, 2006). As a continuation of our work in this area (Mustaphi et al., 2001; Ferfra et al., 2001), we have synthesized the new title compound and determined its crystal structure.
In the title molecule (Fig. 1), the C1–C6 ring is planar to within 0.0109 (16) Å with an r.m.s. deviation of the fitted atoms of 0.007 Å. By contrast, the maximum deviations from the N1/C7/C8/N1/C1/C2 ring are 0.0251 (16) Å (C8) and −0.0228 (15) Å (N2) with an r.m.s. deviation of 0.015 Å. As depicted in Fig. 2, the molecules pack to form polar and non-polar regions. The major intermolecular interaction appears to be complementary π-stacking between oppositely oriented tetrahydroquinoxaline units [Cg1⋯Cg2i = 3.767 (2) Å; Cg1 and Cg2 are the centroids of the N1/C7/C8/N1/C1/C2 and C1–C6 rings, respectively; symmetry code: (i) −x + , −y + , −z + 1], which make a dihedral angle of 2.0 (1)°.
Synthesis and crystallization
A mixture of quinoxaline-2,3-dione (1 g, 6.17 mmol), K2CO3 (2.13 g, 15.42 mmol), octyl bromide(2.13 ml, 12.33 mmol) and tetra n-butylammonium bromide as a catalyst in dimethylformamide (60 ml), was stirred at room temperature for 48 h. The solution was filtered by suction and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (90/10) as eluents to afford the title compound as colorless crystals upon recrystallization from ethanol solution.
Refinement
Crystal data, data collection and structure and .
data are summarized in Table 1Structural data
CCDC reference: 1542476
https://doi.org/10.1107/S241431461700520X/hg4021sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700520X/hg4021Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461700520X/hg4021Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H38N2O2 | F(000) = 1696 |
Mr = 386.56 | Dx = 1.100 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 26.407 (1) Å | Cell parameters from 8815 reflections |
b = 14.3718 (5) Å | θ = 3.6–74.6° |
c = 12.9624 (5) Å | µ = 0.54 mm−1 |
β = 108.312 (2)° | T = 298 K |
V = 4670.3 (3) Å3 | Thick plate, colourless |
Z = 8 | 0.25 × 0.20 × 0.07 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4687 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2965 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.065 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.9°, θmin = 3.6° |
ω scans | h = −30→33 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −17→17 |
Tmin = 0.78, Tmax = 0.96 | l = −15→16 |
17969 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: mixed |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0811P)2 + 3.6894P] where P = (Fo2 + 2Fc2)/3 |
4687 reflections | (Δ/σ)max < 0.001 |
365 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Because of the significant librational motions of the last two carbon atoms of the octyl chains, it was not possible to locate the associated hydrogen atoms with confidence. These were included as riding contributions in idealized positions. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.74116 (9) | 0.54364 (12) | 0.59734 (18) | 0.0900 (7) | |
O2 | 0.77845 (9) | 0.45664 (13) | 0.79053 (15) | 0.0833 (6) | |
N1 | 0.70490 (8) | 0.40936 (13) | 0.51553 (16) | 0.0557 (5) | |
N2 | 0.73887 (8) | 0.32196 (12) | 0.71746 (14) | 0.0532 (5) | |
C1 | 0.71139 (9) | 0.26985 (14) | 0.62490 (18) | 0.0492 (5) | |
C2 | 0.70215 (10) | 0.17526 (17) | 0.6314 (2) | 0.0595 (6) | |
H2 | 0.7170 (10) | 0.1495 (16) | 0.697 (2) | 0.056 (7)* | |
C3 | 0.67539 (12) | 0.12529 (18) | 0.5395 (2) | 0.0708 (8) | |
H3 | 0.6691 (10) | 0.062 (2) | 0.545 (2) | 0.076 (8)* | |
C4 | 0.65768 (12) | 0.16928 (19) | 0.4408 (3) | 0.0728 (8) | |
H4 | 0.6376 (12) | 0.138 (2) | 0.380 (3) | 0.089 (10)* | |
C5 | 0.66673 (11) | 0.26283 (17) | 0.4326 (2) | 0.0621 (7) | |
H5 | 0.6520 (10) | 0.2918 (18) | 0.365 (2) | 0.067 (8)* | |
C6 | 0.69430 (9) | 0.31416 (15) | 0.52398 (18) | 0.0503 (5) | |
C7 | 0.73204 (10) | 0.46110 (16) | 0.6031 (2) | 0.0626 (7) | |
C8 | 0.75199 (10) | 0.41277 (16) | 0.7119 (2) | 0.0604 (6) | |
C9 | 0.69058 (11) | 0.4552 (2) | 0.4085 (2) | 0.0644 (7) | |
H9A | 0.7150 (11) | 0.507 (2) | 0.419 (2) | 0.079 (8)* | |
H9B | 0.6974 (10) | 0.4120 (19) | 0.356 (2) | 0.070 (8)* | |
C10 | 0.63381 (11) | 0.48941 (19) | 0.3665 (2) | 0.0619 (7) | |
H10A | 0.6284 (10) | 0.5282 (18) | 0.422 (2) | 0.064 (7)* | |
H10B | 0.6084 (10) | 0.4385 (19) | 0.360 (2) | 0.069 (7)* | |
C11 | 0.62461 (12) | 0.5370 (2) | 0.2581 (3) | 0.0745 (8) | |
H11A | 0.6500 (13) | 0.589 (2) | 0.269 (2) | 0.099 (10)* | |
H11B | 0.6350 (15) | 0.492 (3) | 0.203 (3) | 0.121 (12)* | |
C12 | 0.56892 (13) | 0.5723 (2) | 0.2037 (3) | 0.0769 (8) | |
H12A | 0.5564 (13) | 0.612 (2) | 0.255 (3) | 0.105 (11)* | |
H12B | 0.5409 (13) | 0.523 (2) | 0.194 (2) | 0.096 (10)* | |
C13 | 0.56333 (15) | 0.6179 (3) | 0.0948 (3) | 0.0942 (11) | |
H13A | 0.5897 (17) | 0.668 (3) | 0.112 (3) | 0.136 (16)* | |
H13B | 0.5719 (16) | 0.566 (3) | 0.044 (3) | 0.143 (16)* | |
C14 | 0.50903 (18) | 0.6512 (3) | 0.0323 (3) | 0.1102 (13) | |
H14B | 0.4791 (18) | 0.598 (3) | 0.030 (3) | 0.157 (17)* | |
H14A | 0.4975 (10) | 0.6937 (18) | 0.085 (2) | 0.063 (7)* | |
C15 | 0.50677 (19) | 0.6956 (4) | −0.0776 (4) | 0.1469 (19) | |
H15A | 0.5305 | 0.7506 | −0.0632 | 0.176* | |
H15B | 0.5211 | 0.6503 | −0.1190 | 0.176* | |
C16 | 0.4567 (2) | 0.7227 (5) | −0.1415 (4) | 0.177 (2) | |
H16A | 0.4590 | 0.7499 | −0.2092 | 0.266* | |
H16B | 0.4330 | 0.6684 | −0.1583 | 0.266* | |
H16C | 0.4424 | 0.7690 | −0.1025 | 0.266* | |
C17 | 0.75789 (12) | 0.2801 (2) | 0.8271 (2) | 0.0619 (7) | |
H17A | 0.7569 (10) | 0.327 (2) | 0.873 (2) | 0.071 (8)* | |
H17B | 0.7347 (11) | 0.2350 (19) | 0.827 (2) | 0.069 (8)* | |
C18 | 0.81408 (12) | 0.2432 (2) | 0.8558 (2) | 0.0640 (7) | |
H18A | 0.8340 (11) | 0.285 (2) | 0.827 (2) | 0.081 (9)* | |
H18B | 0.8127 (10) | 0.1829 (19) | 0.819 (2) | 0.064 (7)* | |
C19 | 0.84036 (14) | 0.2334 (2) | 0.9775 (2) | 0.0696 (7) | |
H19A | 0.8744 (11) | 0.195 (2) | 0.990 (2) | 0.077 (8)* | |
H19B | 0.8182 (12) | 0.201 (2) | 1.009 (2) | 0.086 (10)* | |
C20 | 0.85371 (18) | 0.3267 (2) | 1.0348 (3) | 0.0858 (9) | |
H20B | 0.8221 (13) | 0.361 (2) | 1.027 (2) | 0.089 (10)* | |
H20A | 0.8800 (15) | 0.362 (2) | 1.013 (3) | 0.113 (13)* | |
C21 | 0.88719 (16) | 0.3219 (3) | 1.1508 (3) | 0.0897 (10) | |
H21B | 0.8680 (13) | 0.276 (2) | 1.190 (3) | 0.099 (10)* | |
H21A | 0.9239 (16) | 0.288 (3) | 1.155 (3) | 0.134 (14)* | |
C22 | 0.8982 (2) | 0.4168 (3) | 1.2046 (4) | 0.1124 (14) | |
H22A | 0.9188 (14) | 0.453 (3) | 1.168 (3) | 0.102 (13)* | |
H22B | 0.8648 (17) | 0.445 (3) | 1.199 (3) | 0.136 (16)* | |
C23 | 0.9322 (2) | 0.4163 (4) | 1.3191 (4) | 0.1512 (19) | |
H23A | 0.9674 | 0.3896 | 1.3240 | 0.181* | |
H23B | 0.9157 | 0.3762 | 1.3618 | 0.181* | |
C24 | 0.9397 (3) | 0.5124 (5) | 1.3667 (5) | 0.233 (4) | |
H24A | 0.9624 | 0.5095 | 1.4426 | 0.349* | |
H24B | 0.9566 | 0.5520 | 1.3254 | 0.349* | |
H24C | 0.9049 | 0.5386 | 1.3631 | 0.349* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1099 (17) | 0.0429 (10) | 0.1054 (16) | −0.0037 (9) | 0.0169 (13) | 0.0042 (9) |
O2 | 0.1063 (16) | 0.0604 (11) | 0.0740 (13) | −0.0030 (10) | 0.0151 (11) | −0.0195 (10) |
N1 | 0.0601 (12) | 0.0460 (10) | 0.0617 (12) | 0.0050 (8) | 0.0200 (10) | 0.0052 (9) |
N2 | 0.0612 (12) | 0.0481 (10) | 0.0517 (11) | 0.0075 (8) | 0.0199 (10) | −0.0027 (8) |
C1 | 0.0497 (12) | 0.0458 (11) | 0.0546 (13) | 0.0056 (9) | 0.0198 (11) | −0.0015 (10) |
C2 | 0.0661 (16) | 0.0495 (13) | 0.0618 (16) | 0.0061 (11) | 0.0185 (13) | 0.0081 (12) |
C3 | 0.0801 (19) | 0.0443 (13) | 0.0819 (19) | −0.0054 (12) | 0.0168 (15) | −0.0018 (13) |
C4 | 0.081 (2) | 0.0570 (15) | 0.0701 (18) | −0.0004 (13) | 0.0087 (16) | −0.0105 (14) |
C5 | 0.0685 (16) | 0.0571 (14) | 0.0566 (15) | 0.0097 (12) | 0.0139 (13) | 0.0004 (12) |
C6 | 0.0515 (13) | 0.0448 (11) | 0.0568 (14) | 0.0062 (9) | 0.0199 (11) | −0.0008 (10) |
C7 | 0.0680 (16) | 0.0432 (12) | 0.0752 (17) | 0.0056 (11) | 0.0208 (14) | −0.0004 (12) |
C8 | 0.0656 (16) | 0.0497 (13) | 0.0654 (16) | 0.0062 (11) | 0.0200 (13) | −0.0092 (12) |
C9 | 0.0667 (17) | 0.0571 (14) | 0.0695 (17) | 0.0029 (12) | 0.0215 (14) | 0.0145 (13) |
C10 | 0.0627 (16) | 0.0545 (14) | 0.0685 (17) | 0.0045 (12) | 0.0204 (14) | 0.0072 (12) |
C11 | 0.0706 (19) | 0.0750 (18) | 0.0780 (19) | 0.0070 (15) | 0.0235 (16) | 0.0205 (15) |
C12 | 0.0704 (19) | 0.0771 (19) | 0.080 (2) | 0.0067 (15) | 0.0189 (16) | 0.0140 (16) |
C13 | 0.083 (2) | 0.109 (3) | 0.083 (2) | 0.014 (2) | 0.0160 (19) | 0.029 (2) |
C14 | 0.098 (3) | 0.127 (3) | 0.098 (3) | 0.022 (3) | 0.021 (2) | 0.026 (2) |
C15 | 0.113 (3) | 0.205 (5) | 0.107 (3) | 0.038 (3) | 0.011 (3) | 0.058 (3) |
C16 | 0.163 (5) | 0.228 (7) | 0.139 (4) | 0.051 (5) | 0.044 (4) | 0.034 (4) |
C17 | 0.0705 (18) | 0.0654 (16) | 0.0525 (15) | 0.0023 (13) | 0.0234 (13) | −0.0026 (13) |
C18 | 0.0739 (18) | 0.0602 (15) | 0.0580 (16) | 0.0107 (13) | 0.0210 (14) | 0.0002 (13) |
C19 | 0.080 (2) | 0.0648 (16) | 0.0616 (17) | 0.0072 (15) | 0.0191 (15) | 0.0048 (13) |
C20 | 0.099 (3) | 0.076 (2) | 0.074 (2) | 0.0035 (19) | 0.0147 (19) | −0.0045 (16) |
C21 | 0.093 (2) | 0.091 (2) | 0.076 (2) | 0.0020 (19) | 0.0146 (19) | −0.0038 (18) |
C22 | 0.107 (3) | 0.109 (3) | 0.102 (3) | 0.002 (3) | 0.006 (3) | −0.032 (2) |
C23 | 0.138 (4) | 0.164 (5) | 0.127 (4) | 0.012 (3) | 0.007 (3) | −0.034 (3) |
C24 | 0.242 (8) | 0.192 (6) | 0.202 (6) | 0.013 (5) | −0.021 (6) | −0.111 (5) |
O1—C7 | 1.217 (3) | C14—C15 | 1.545 (6) |
O2—C8 | 1.215 (3) | C14—H14B | 1.10 (5) |
N1—C7 | 1.358 (3) | C14—H14A | 1.03 (3) |
N1—C6 | 1.408 (3) | C15—C16 | 1.378 (6) |
N1—C9 | 1.474 (3) | C15—H15A | 0.9900 |
N2—C8 | 1.358 (3) | C15—H15B | 0.9900 |
N2—C1 | 1.407 (3) | C16—H16A | 0.9800 |
N2—C17 | 1.478 (3) | C16—H16B | 0.9800 |
C1—C2 | 1.388 (3) | C16—H16C | 0.9800 |
C1—C6 | 1.396 (3) | C17—C18 | 1.508 (4) |
C2—C3 | 1.380 (4) | C17—H17A | 0.91 (3) |
C2—H2 | 0.90 (2) | C17—H17B | 0.89 (3) |
C3—C4 | 1.371 (4) | C18—C19 | 1.518 (4) |
C3—H3 | 0.93 (3) | C18—H18A | 0.95 (3) |
C4—C5 | 1.376 (4) | C18—H18B | 0.98 (3) |
C4—H4 | 0.91 (3) | C19—C20 | 1.519 (4) |
C5—C6 | 1.391 (3) | C19—H19A | 1.03 (3) |
C5—H5 | 0.94 (3) | C19—H19B | 0.94 (3) |
C7—C8 | 1.511 (4) | C20—C21 | 1.488 (5) |
C9—C10 | 1.507 (4) | C20—H20B | 0.95 (3) |
C9—H9A | 0.97 (3) | C20—H20A | 0.97 (4) |
C9—H9B | 0.98 (3) | C21—C22 | 1.518 (5) |
C10—C11 | 1.512 (4) | C21—H21B | 1.05 (3) |
C10—H10A | 0.96 (3) | C21—H21A | 1.07 (4) |
C10—H10B | 0.98 (3) | C22—C23 | 1.473 (6) |
C11—C12 | 1.505 (4) | C22—H22A | 0.98 (3) |
C11—H11A | 0.98 (3) | C22—H22B | 0.96 (4) |
C11—H11B | 1.06 (4) | C23—C24 | 1.500 (7) |
C12—C13 | 1.520 (4) | C23—H23A | 0.9900 |
C12—H12A | 1.01 (3) | C23—H23B | 0.9900 |
C12—H12B | 1.01 (3) | C24—H24A | 0.9800 |
C13—C14 | 1.487 (5) | C24—H24B | 0.9800 |
C13—H13A | 0.98 (4) | C24—H24C | 0.9800 |
C13—H13B | 1.06 (4) | ||
C7—N1—C6 | 122.2 (2) | C13—C14—H14A | 105.3 (15) |
C7—N1—C9 | 117.0 (2) | C15—C14—H14A | 115.7 (15) |
C6—N1—C9 | 120.6 (2) | H14B—C14—H14A | 94 (3) |
C8—N2—C1 | 122.6 (2) | C16—C15—C14 | 115.0 (4) |
C8—N2—C17 | 115.3 (2) | C16—C15—H15A | 108.5 |
C1—N2—C17 | 122.1 (2) | C14—C15—H15A | 108.5 |
C2—C1—C6 | 119.5 (2) | C16—C15—H15B | 108.5 |
C2—C1—N2 | 121.5 (2) | C14—C15—H15B | 108.5 |
C6—C1—N2 | 119.0 (2) | H15A—C15—H15B | 107.5 |
C3—C2—C1 | 120.6 (3) | C15—C16—H16A | 109.5 |
C3—C2—H2 | 123.8 (15) | C15—C16—H16B | 109.5 |
C1—C2—H2 | 115.3 (15) | H16A—C16—H16B | 109.5 |
C4—C3—C2 | 119.8 (3) | C15—C16—H16C | 109.5 |
C4—C3—H3 | 120.0 (17) | H16A—C16—H16C | 109.5 |
C2—C3—H3 | 120.2 (17) | H16B—C16—H16C | 109.5 |
C3—C4—C5 | 120.4 (3) | N2—C17—C18 | 113.0 (2) |
C3—C4—H4 | 121.1 (19) | N2—C17—H17A | 105.4 (17) |
C5—C4—H4 | 118.4 (19) | C18—C17—H17A | 109.1 (17) |
C4—C5—C6 | 120.7 (3) | N2—C17—H17B | 105.8 (17) |
C4—C5—H5 | 118.4 (16) | C18—C17—H17B | 111.4 (18) |
C6—C5—H5 | 120.8 (16) | H17A—C17—H17B | 112 (2) |
C5—C6—C1 | 119.0 (2) | C17—C18—C19 | 112.5 (2) |
C5—C6—N1 | 120.9 (2) | C17—C18—H18A | 107.5 (17) |
C1—C6—N1 | 120.2 (2) | C19—C18—H18A | 109.9 (17) |
O1—C7—N1 | 123.1 (2) | C17—C18—H18B | 107.8 (15) |
O1—C7—C8 | 119.2 (2) | C19—C18—H18B | 111.0 (14) |
N1—C7—C8 | 117.8 (2) | H18A—C18—H18B | 108 (2) |
O2—C8—N2 | 122.9 (2) | C18—C19—C20 | 112.8 (2) |
O2—C8—C7 | 119.0 (2) | C18—C19—H19A | 107.6 (15) |
N2—C8—C7 | 118.1 (2) | C20—C19—H19A | 110.4 (16) |
N1—C9—C10 | 114.7 (2) | C18—C19—H19B | 110.5 (18) |
N1—C9—H9A | 104.7 (17) | C20—C19—H19B | 108.4 (18) |
C10—C9—H9A | 110.1 (16) | H19A—C19—H19B | 107 (2) |
N1—C9—H9B | 108.5 (15) | C21—C20—C19 | 115.2 (3) |
C10—C9—H9B | 109.7 (15) | C21—C20—H20B | 111.0 (19) |
H9A—C9—H9B | 109 (2) | C19—C20—H20B | 110.3 (19) |
C9—C10—C11 | 109.6 (2) | C21—C20—H20A | 94 (2) |
C9—C10—H10A | 106.5 (15) | C19—C20—H20A | 113 (2) |
C11—C10—H10A | 114.7 (15) | H20B—C20—H20A | 112 (3) |
C9—C10—H10B | 111.3 (15) | C20—C21—C22 | 112.9 (3) |
C11—C10—H10B | 110.9 (15) | C20—C21—H21B | 107.0 (18) |
H10A—C10—H10B | 104 (2) | C22—C21—H21B | 113.2 (18) |
C12—C11—C10 | 115.9 (3) | C20—C21—H21A | 108 (2) |
C12—C11—H11A | 109.4 (19) | C22—C21—H21A | 110 (2) |
C10—C11—H11A | 108.2 (19) | H21B—C21—H21A | 105 (3) |
C12—C11—H11B | 108 (2) | C23—C22—C21 | 115.2 (4) |
C10—C11—H11B | 110 (2) | C23—C22—H22A | 104 (2) |
H11A—C11—H11B | 104 (3) | C21—C22—H22A | 108 (2) |
C11—C12—C13 | 112.1 (3) | C23—C22—H22B | 109 (3) |
C11—C12—H12A | 111.0 (19) | C21—C22—H22B | 108 (3) |
C13—C12—H12A | 114.1 (19) | H22A—C22—H22B | 112 (4) |
C11—C12—H12B | 113.0 (18) | C22—C23—C24 | 111.7 (5) |
C13—C12—H12B | 109.6 (18) | C22—C23—H23A | 109.3 |
H12A—C12—H12B | 96 (3) | C24—C23—H23A | 109.3 |
C14—C13—C12 | 116.1 (3) | C22—C23—H23B | 109.3 |
C14—C13—H13A | 112 (3) | C24—C23—H23B | 109.3 |
C12—C13—H13A | 105 (2) | H23A—C23—H23B | 107.9 |
C14—C13—H13B | 104 (2) | C23—C24—H24A | 109.5 |
C12—C13—H13B | 107 (2) | C23—C24—H24B | 109.5 |
H13A—C13—H13B | 113 (3) | H24A—C24—H24B | 109.5 |
C13—C14—C15 | 112.7 (4) | C23—C24—H24C | 109.5 |
C13—C14—H14B | 111 (2) | H24A—C24—H24C | 109.5 |
C15—C14—H14B | 117 (2) | H24B—C24—H24C | 109.5 |
C8—N2—C1—C2 | 174.8 (2) | C17—N2—C8—O2 | 1.5 (4) |
C17—N2—C1—C2 | −2.0 (3) | C1—N2—C8—C7 | 5.3 (3) |
C8—N2—C1—C6 | −3.6 (3) | C17—N2—C8—C7 | −177.7 (2) |
C17—N2—C1—C6 | 179.6 (2) | O1—C7—C8—O2 | −2.8 (4) |
C6—C1—C2—C3 | −1.3 (4) | N1—C7—C8—O2 | 176.7 (2) |
N2—C1—C2—C3 | −179.6 (2) | O1—C7—C8—N2 | 176.5 (2) |
C1—C2—C3—C4 | 0.0 (4) | N1—C7—C8—N2 | −4.0 (3) |
C2—C3—C4—C5 | 0.4 (5) | C7—N1—C9—C10 | −99.8 (3) |
C3—C4—C5—C6 | 0.5 (4) | C6—N1—C9—C10 | 85.0 (3) |
C4—C5—C6—C1 | −1.8 (4) | N1—C9—C10—C11 | 178.6 (3) |
C4—C5—C6—N1 | 178.3 (2) | C9—C10—C11—C12 | 178.1 (3) |
C2—C1—C6—C5 | 2.1 (3) | C10—C11—C12—C13 | −179.3 (3) |
N2—C1—C6—C5 | −179.5 (2) | C11—C12—C13—C14 | 177.3 (4) |
C2—C1—C6—N1 | −177.9 (2) | C12—C13—C14—C15 | −179.4 (4) |
N2—C1—C6—N1 | 0.5 (3) | C13—C14—C15—C16 | 176.4 (5) |
C7—N1—C6—C5 | −179.5 (2) | C8—N2—C17—C18 | −85.7 (3) |
C9—N1—C6—C5 | −4.6 (3) | C1—N2—C17—C18 | 91.4 (3) |
C7—N1—C6—C1 | 0.6 (3) | N2—C17—C18—C19 | 159.0 (2) |
C9—N1—C6—C1 | 175.5 (2) | C17—C18—C19—C20 | −70.9 (4) |
C6—N1—C7—O1 | −179.4 (2) | C18—C19—C20—C21 | −170.6 (3) |
C9—N1—C7—O1 | 5.5 (4) | C19—C20—C21—C22 | −178.7 (4) |
C6—N1—C7—C8 | 1.2 (3) | C20—C21—C22—C23 | −178.7 (4) |
C9—N1—C7—C8 | −173.9 (2) | C21—C22—C23—C24 | −178.3 (5) |
C1—N2—C8—O2 | −175.5 (2) |
Acknowledgements
The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
De Sarro, G., Ferreri, G., Gareri, P., Russo, E., De Sarro, A., Gitto, R. & Chimiri, A. (2003). Pharmacol. Biochem. Behav. 74, 595–602. Web of Science CrossRef PubMed CAS Google Scholar
Ferfra, S., Ahabchane, N. H., Mustaphi, N. E., Essassi, E. M., Bellan, J. & Pierrot, M. (2001). Phosphorus Sulfur Silicon, 175, 169–181. Web of Science CrossRef CAS Google Scholar
Fray, M. J., Bull, D. J., Carr, C. L., Gautier, E. C. L., Mowbray, C. E. & Stobie, A. (2001). J. Med. Chem. 44, 1951–1962. Web of Science CrossRef PubMed CAS Google Scholar
Kotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181–6184. Web of Science CrossRef PubMed CAS Google Scholar
Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. 14, 6120–6126. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.