organic compounds
2-Oxo-2H-chromen-3-yl 4-fluorobenzoate
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso, and cLaboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheick Anta DIOP, Dakar, Senegal
*Correspondence e-mail: eric.ziki@gmail.com
In the title compound, C16H9FO4, the dihedral angle between the planar coumarin ring system [maximum deviation = 0.027 (1) Å] and the benzene ring is 70.18 (6)°. In the crystal, π–π interactions [shortest centroid–centroid separation = 3.5338 (8) Å] link the molecules into a three-dimensional framework.
Keywords: crystal structure; chroman; hydrogen bond; π–π interactions.
CCDC reference: 1543492
Structure description
Coumarin and its derivatives are widely recognized for their multiple biological activities, including anticancer (Lacy & O'Kennedy, 2004) and anti-inflammatory (Todeschini et al., 1998) effects. As part of our studies in this area, we now describe the synthesis and of the title compound (Fig. 1).
The coumarin ring system is, as expected, almost planar [maximum deviation = 0.027 (1) Å for atom C1] and is oriented at an angle of 70.18 (6)° with respect to the benzene ring. The C3—C2 [1.3332 (18) Å] and C2—C1 [1.4553 (19) Å] bond lengths are slightly shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2017).
In the crystal, weak aromatic π–π stacking interactions are present [Cg1⋯Cg2i = 3.5337 (8) Å and Cg2⋯Cg2i = 3.6529 (8) Å, where Cg1 and Cg2 are the centroids of the coumarin pyran and benzene rings, respectively; symmetry code: (i) 2 − x, 1 − y, 1 − z]. Together, these lead to a three-dimensional supramolecular network.
Synthesis and crystallization
To a solution of 4-fluorobenzoyl chloride (6.17 mmol, ≃1 g) in dry tetrahydrofuran (31 ml), was introduced dried triethylamine (3 molar equivalents, ≃2.6 ml). While stirring strongly, 6.17 mmol (1 g) of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured into a separating funnel containing 40 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was washed with petroleum ether and dissolved in a minimum amount of chloroform by heating under agitation. To this hot mixture, hexane was added until the formation of a new precipitate started; this dissolved in the resulting mixture upon heating. Upon cooling, colourless crystals of the title compound precipitated in a yield of 80%, m.p. 452–454 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1543492
https://doi.org/10.1107/S2414314617005508/hb7657sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617005508/hb7657Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005508/hb7657Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C16H9FO4 | Z = 2 |
Mr = 284.23 | F(000) = 292 |
Triclinic, P1 | Dx = 1.491 Mg m−3 |
Hall symbol: -P 1 | Melting point: 452 K |
a = 6.8116 (2) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.2402 (2) Å | Cell parameters from 7530 reflections |
c = 13.4826 (3) Å | θ = 6.6–69.4° |
α = 96.943 (2)° | µ = 1.00 mm−1 |
β = 90.862 (2)° | T = 293 K |
γ = 106.139 (2)° | Prism, colourless |
V = 633.21 (3) Å3 | 0.36 × 0.26 × 0.16 mm |
Agilent SuperNova, Dual, Cu at zero, AtlasS2 diffractometer | 2358 independent reflections |
Radiation source: fine-focus sealed tube | 2112 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 69.5°, θmin = 6.4° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −8→8 |
Tmin = 0.788, Tmax = 1.000 | l = −16→16 |
12676 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.1315P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
2358 reflections | Δρmax = 0.15 e Å−3 |
191 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0047 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.28843 (13) | 0.32990 (14) | 0.54636 (7) | 0.0486 (3) | |
O3 | 0.13270 (16) | 0.55441 (14) | 0.77556 (7) | 0.0526 (3) | |
C3 | −0.06635 (19) | 0.37512 (18) | 0.63231 (9) | 0.0431 (3) | |
H3 | −0.1840 | 0.3938 | 0.6607 | 0.052* | |
C2 | 0.1136 (2) | 0.44106 (18) | 0.68358 (10) | 0.0439 (3) | |
C4 | −0.07706 (19) | 0.27525 (17) | 0.53310 (10) | 0.0414 (3) | |
C8 | 0.1081 (2) | 0.1647 (2) | 0.39686 (10) | 0.0526 (4) | |
H8 | 0.2313 | 0.1564 | 0.3706 | 0.063* | |
O2 | 0.47036 (15) | 0.47719 (17) | 0.68475 (8) | 0.0660 (3) | |
C9 | 0.1037 (2) | 0.25624 (18) | 0.49220 (9) | 0.0424 (3) | |
O4 | 0.19944 (16) | 0.32095 (15) | 0.85538 (8) | 0.0599 (3) | |
C5 | −0.2591 (2) | 0.1964 (2) | 0.47421 (11) | 0.0509 (3) | |
H5 | −0.3823 | 0.2080 | 0.4991 | 0.061* | |
C1 | 0.3038 (2) | 0.4204 (2) | 0.64253 (10) | 0.0470 (3) | |
C11 | 0.22979 (19) | 0.6336 (2) | 0.94604 (10) | 0.0471 (3) | |
C10 | 0.1894 (2) | 0.4839 (2) | 0.85772 (10) | 0.0473 (3) | |
F | 0.34415 (19) | 1.0344 (2) | 1.19588 (8) | 0.1091 (5) | |
C6 | −0.2564 (3) | 0.1018 (2) | 0.37969 (12) | 0.0602 (4) | |
H6 | −0.3781 | 0.0482 | 0.3413 | 0.072* | |
C16 | 0.2040 (2) | 0.8158 (2) | 0.94244 (11) | 0.0550 (4) | |
H16 | 0.1610 | 0.8470 | 0.8825 | 0.066* | |
C15 | 0.2415 (2) | 0.9517 (3) | 1.02675 (13) | 0.0663 (4) | |
H15 | 0.2234 | 1.0739 | 1.0247 | 0.080* | |
C7 | −0.0734 (3) | 0.0859 (2) | 0.34129 (11) | 0.0602 (4) | |
H7 | −0.0733 | 0.0213 | 0.2773 | 0.072* | |
C12 | 0.2947 (2) | 0.5883 (3) | 1.03582 (11) | 0.0577 (4) | |
H12 | 0.3111 | 0.4658 | 1.0390 | 0.069* | |
C13 | 0.3350 (2) | 0.7236 (3) | 1.12031 (11) | 0.0692 (5) | |
H13 | 0.3807 | 0.6949 | 1.1804 | 0.083* | |
C14 | 0.3060 (2) | 0.9012 (3) | 1.11331 (12) | 0.0703 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0441 (5) | 0.0577 (6) | 0.0475 (5) | 0.0211 (4) | 0.0023 (4) | 0.0047 (4) |
O3 | 0.0689 (6) | 0.0553 (6) | 0.0386 (5) | 0.0281 (5) | −0.0071 (4) | 0.0014 (4) |
C3 | 0.0447 (7) | 0.0472 (7) | 0.0427 (7) | 0.0198 (6) | 0.0045 (5) | 0.0100 (6) |
C2 | 0.0523 (7) | 0.0439 (7) | 0.0386 (7) | 0.0190 (6) | −0.0022 (5) | 0.0053 (5) |
C4 | 0.0465 (7) | 0.0389 (6) | 0.0412 (7) | 0.0148 (5) | −0.0020 (5) | 0.0092 (5) |
C8 | 0.0717 (9) | 0.0509 (8) | 0.0431 (7) | 0.0297 (7) | 0.0051 (7) | 0.0073 (6) |
O2 | 0.0463 (6) | 0.0844 (8) | 0.0644 (7) | 0.0155 (5) | −0.0097 (5) | 0.0067 (6) |
C9 | 0.0493 (7) | 0.0395 (6) | 0.0420 (7) | 0.0174 (5) | −0.0010 (5) | 0.0084 (5) |
O4 | 0.0687 (7) | 0.0593 (6) | 0.0574 (6) | 0.0261 (5) | −0.0023 (5) | 0.0121 (5) |
C5 | 0.0484 (7) | 0.0501 (8) | 0.0546 (8) | 0.0136 (6) | −0.0070 (6) | 0.0104 (6) |
C1 | 0.0470 (7) | 0.0487 (7) | 0.0471 (7) | 0.0155 (6) | −0.0033 (6) | 0.0085 (6) |
C11 | 0.0377 (6) | 0.0651 (9) | 0.0397 (7) | 0.0162 (6) | 0.0005 (5) | 0.0075 (6) |
C10 | 0.0421 (7) | 0.0588 (8) | 0.0438 (7) | 0.0175 (6) | 0.0001 (5) | 0.0101 (6) |
F | 0.1002 (9) | 0.1531 (12) | 0.0620 (7) | 0.0413 (8) | −0.0124 (6) | −0.0444 (7) |
C6 | 0.0707 (10) | 0.0504 (8) | 0.0558 (9) | 0.0126 (7) | −0.0200 (7) | 0.0063 (7) |
C16 | 0.0528 (8) | 0.0656 (9) | 0.0471 (8) | 0.0201 (7) | −0.0054 (6) | 0.0017 (7) |
C15 | 0.0600 (9) | 0.0731 (10) | 0.0630 (10) | 0.0225 (8) | −0.0029 (7) | −0.0103 (8) |
C7 | 0.0944 (12) | 0.0479 (8) | 0.0418 (8) | 0.0275 (8) | −0.0080 (8) | 0.0027 (6) |
C12 | 0.0478 (8) | 0.0856 (11) | 0.0455 (8) | 0.0253 (7) | 0.0033 (6) | 0.0156 (7) |
C13 | 0.0516 (9) | 0.1223 (16) | 0.0361 (8) | 0.0295 (9) | 0.0000 (6) | 0.0087 (8) |
C14 | 0.0496 (8) | 0.1086 (14) | 0.0460 (9) | 0.0234 (9) | −0.0019 (7) | −0.0175 (9) |
O1—C1 | 1.3688 (16) | C5—H5 | 0.9300 |
O1—C9 | 1.3804 (15) | C11—C16 | 1.385 (2) |
O3—C10 | 1.3676 (16) | C11—C12 | 1.389 (2) |
O3—C2 | 1.3849 (15) | C11—C10 | 1.4765 (19) |
C3—C2 | 1.3332 (18) | F—C14 | 1.3525 (18) |
C3—C4 | 1.4322 (17) | C6—C7 | 1.386 (2) |
C3—H3 | 0.9300 | C6—H6 | 0.9300 |
C2—C1 | 1.4553 (19) | C16—C15 | 1.381 (2) |
C4—C9 | 1.3914 (18) | C16—H16 | 0.9300 |
C4—C5 | 1.4005 (18) | C15—C14 | 1.366 (3) |
C8—C7 | 1.376 (2) | C15—H15 | 0.9300 |
C8—C9 | 1.3779 (18) | C7—H7 | 0.9300 |
C8—H8 | 0.9300 | C12—C13 | 1.380 (2) |
O2—C1 | 1.2018 (16) | C12—H12 | 0.9300 |
O4—C10 | 1.1974 (17) | C13—C14 | 1.368 (3) |
C5—C6 | 1.375 (2) | C13—H13 | 0.9300 |
C1—O1—C9 | 122.55 (10) | C12—C11—C10 | 118.42 (14) |
C10—O3—C2 | 118.12 (10) | O4—C10—O3 | 122.73 (13) |
C2—C3—C4 | 119.50 (12) | O4—C10—C11 | 126.62 (13) |
C2—C3—H3 | 120.2 | O3—C10—C11 | 110.64 (12) |
C4—C3—H3 | 120.2 | C5—C6—C7 | 120.37 (14) |
C3—C2—O3 | 120.88 (12) | C5—C6—H6 | 119.8 |
C3—C2—C1 | 122.92 (12) | C7—C6—H6 | 119.8 |
O3—C2—C1 | 115.77 (11) | C15—C16—C11 | 120.84 (15) |
C9—C4—C5 | 117.83 (12) | C15—C16—H16 | 119.6 |
C9—C4—C3 | 118.33 (11) | C11—C16—H16 | 119.6 |
C5—C4—C3 | 123.83 (12) | C14—C15—C16 | 117.96 (17) |
C7—C8—C9 | 118.66 (14) | C14—C15—H15 | 121.0 |
C7—C8—H8 | 120.7 | C16—C15—H15 | 121.0 |
C9—C8—H8 | 120.7 | C8—C7—C6 | 120.63 (14) |
C8—C9—O1 | 116.95 (12) | C8—C7—H7 | 119.7 |
C8—C9—C4 | 122.25 (12) | C6—C7—H7 | 119.7 |
O1—C9—C4 | 120.80 (11) | C13—C12—C11 | 120.52 (16) |
C6—C5—C4 | 120.23 (14) | C13—C12—H12 | 119.7 |
C6—C5—H5 | 119.9 | C11—C12—H12 | 119.7 |
C4—C5—H5 | 119.9 | C14—C13—C12 | 118.18 (15) |
O2—C1—O1 | 118.12 (13) | C14—C13—H13 | 120.9 |
O2—C1—C2 | 126.03 (13) | C12—C13—H13 | 120.9 |
O1—C1—C2 | 115.84 (11) | F—C14—C15 | 118.14 (19) |
C16—C11—C12 | 119.20 (14) | F—C14—C13 | 118.57 (16) |
C16—C11—C10 | 122.38 (12) | C15—C14—C13 | 123.29 (15) |
C4—C3—C2—O3 | 173.63 (11) | O3—C2—C1—O1 | −171.86 (10) |
C4—C3—C2—C1 | 1.4 (2) | C2—O3—C10—O4 | −9.0 (2) |
C10—O3—C2—C3 | 117.23 (14) | C2—O3—C10—C11 | 172.17 (11) |
C10—O3—C2—C1 | −70.06 (16) | C16—C11—C10—O4 | −176.64 (14) |
C2—C3—C4—C9 | −2.15 (18) | C12—C11—C10—O4 | 3.0 (2) |
C2—C3—C4—C5 | 178.32 (12) | C16—C11—C10—O3 | 2.11 (18) |
C7—C8—C9—O1 | 178.67 (11) | C12—C11—C10—O3 | −178.30 (12) |
C7—C8—C9—C4 | −1.5 (2) | C4—C5—C6—C7 | −0.9 (2) |
C1—O1—C9—C8 | −178.64 (11) | C12—C11—C16—C15 | −0.2 (2) |
C1—O1—C9—C4 | 1.50 (18) | C10—C11—C16—C15 | 179.41 (13) |
C5—C4—C9—C8 | 0.44 (19) | C11—C16—C15—C14 | 0.5 (2) |
C3—C4—C9—C8 | −179.12 (12) | C9—C8—C7—C6 | 1.3 (2) |
C5—C4—C9—O1 | −179.71 (11) | C5—C6—C7—C8 | −0.2 (2) |
C3—C4—C9—O1 | 0.73 (18) | C16—C11—C12—C13 | −0.6 (2) |
C9—C4—C5—C6 | 0.8 (2) | C10—C11—C12—C13 | 179.79 (13) |
C3—C4—C5—C6 | −179.72 (12) | C11—C12—C13—C14 | 1.1 (2) |
C9—O1—C1—O2 | 178.72 (12) | C16—C15—C14—F | 179.56 (14) |
C9—O1—C1—C2 | −2.18 (18) | C16—C15—C14—C13 | 0.0 (3) |
C3—C2—C1—O2 | 179.71 (14) | C12—C13—C14—F | 179.68 (14) |
O3—C2—C1—O2 | 7.2 (2) | C12—C13—C14—C15 | −0.8 (3) |
C3—C2—C1—O1 | 0.69 (19) |
Acknowledgements
The authors thank the Spectropole Service of the Faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.
References
Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.