organic compounds
2-Isopropyl-4,7-dimethyl-1-nitronaphthalene
aLaboratoire de Chimie des Substances Naturelles, `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliqué, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: benharref@uca.ac.ma
All the non-H atoms of the title compound, C15H17NO2, except the CH3 groups of the isopropyl unit and the O atoms of the nitro group, lie on a crystallographic mirror plane. The dihedral angle between the naphthalene plane and the nitro group is constrained to be 90° by symmetry. In the crystal, molecules are linked by π–π interactions [centroid–centroid separation = 3.6591 (4) Å] and stacked along the b-axis direction.
Keywords: crystal structure; β-himachalene; π–π interaction.
CCDC reference: 1544812
Structure description
The bicyclic sesquiterpenes α- and β-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) (Benharref et al., 2015; Loubidi et al., 2014). As part of our ongoing studies of such systems (Benharref et al., 2016), we now report the synthesis and of the title compound.
The molecular structure of the title compound is illustrated in Fig. 1. The naphthalene ring system is perfectly planar (all atoms lie on a crystallographic mirror plane). The O atom of the nitro group (N1/O1/O1a) and the isopropyl group (C13/C13a) lie perfectly normal to the mean plane of the naphthalene moieties with the same dihedral angle of 90°. In the crystal, molecules are linked through π–π interactions between naphthalene ring systems stacked along b axis, as shown in Fig. 2, the intercentroid distance being 3.6591 (4) Å.
Synthesis and crystallization
In a reactor of 250 ml volume equipped with a magnetic stirrer and a dropping funnel, were introduced 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, 6 g (30 mmol) of 2-isopropyl-4,7-dimethylnaphthalene, which was synthesized from a mixture of α and β himachalene (Benharref et al. 2016), dissolved in 30 ml of dichloromethane was added dropwise through the dropping funnel. The reaction mixture was stirred for 4 h, then quenched with 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. on a silica gel column of the residue with hexane–ethyl acetate (98/2) as of the residue gave the title compound (yield 5 g, 66%; 20 mmol). It was recrystallized from cyclohexane solution to obtain yellow blocks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1544812
https://doi.org/10.1107/S2414314617005843/hb4139sup1.cif
contains datablocks I, block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617005843/hb4139Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005843/hb4139Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C15H17NO2 | Dx = 1.238 Mg m−3 |
Mr = 243.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 7047 reflections |
a = 15.6744 (12) Å | θ = 3.4–25.7° |
b = 6.9475 (5) Å | µ = 0.08 mm−1 |
c = 11.9880 (8) Å | T = 173 K |
V = 1305.47 (16) Å3 | Box, yellow |
Z = 4 | 0.48 × 0.20 × 0.15 mm |
F(000) = 520 |
Bruker X8 APEX diffractometer | 1155 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.017 |
φ and ω scans | θmax = 25.7°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→19 |
Tmin = 0.811, Tmax = 1.0 | k = −8→8 |
7047 measured reflections | l = −14→12 |
1344 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5331P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.22 e Å−3 |
1344 reflections | Δρmin = −0.32 e Å−3 |
107 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.010 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.45971 (10) | 0.7500 | 0.51511 (14) | 0.0202 (4) | |
C2 | 0.37870 (10) | 0.7500 | 0.56986 (14) | 0.0223 (4) | |
C3 | 0.37553 (10) | 0.7500 | 0.68398 (15) | 0.0240 (4) | |
H3 | 0.3213 | 0.7500 | 0.7194 | 0.029* | |
C4 | 0.44979 (11) | 0.7500 | 0.75165 (15) | 0.0235 (4) | |
C5 | 0.52612 (10) | 0.7500 | 0.69686 (14) | 0.0219 (4) | |
C6 | 0.53587 (10) | 0.7500 | 0.57949 (14) | 0.0203 (4) | |
C7 | 0.61626 (11) | 0.7500 | 0.52544 (15) | 0.0243 (4) | |
H7 | 0.6668 | 0.7500 | 0.5692 | 0.029* | |
C8 | 0.62275 (11) | 0.7500 | 0.41138 (15) | 0.0263 (4) | |
C9 | 0.54670 (12) | 0.7500 | 0.34848 (15) | 0.0274 (4) | |
H9 | 0.5502 | 0.7500 | 0.2694 | 0.033* | |
C10 | 0.46828 (11) | 0.7500 | 0.39775 (15) | 0.0243 (4) | |
H10 | 0.4186 | 0.7500 | 0.3524 | 0.029* | |
C11 | 0.29772 (11) | 0.7500 | 0.50229 (16) | 0.0304 (4) | |
H11A | 0.2914 | 0.8743 | 0.4645 | 0.046* | 0.5 |
H11B | 0.2488 | 0.7289 | 0.5518 | 0.046* | 0.5 |
H11C | 0.3002 | 0.6468 | 0.4466 | 0.046* | 0.5 |
C12 | 0.44162 (12) | 0.7500 | 0.87820 (14) | 0.0296 (4) | |
H12 | 0.5005 | 0.7500 | 0.9102 | 0.035* | |
C13 | 0.39654 (12) | 0.5696 (2) | 0.91927 (12) | 0.0503 (5) | |
H13A | 0.3924 | 0.5730 | 1.0008 | 0.076* | |
H13B | 0.4290 | 0.4557 | 0.8964 | 0.076* | |
H13C | 0.3391 | 0.5637 | 0.8871 | 0.076* | |
C15 | 0.70823 (12) | 0.7500 | 0.35406 (17) | 0.0360 (5) | |
H15A | 0.7247 | 0.6174 | 0.3365 | 0.054* | 0.5 |
H15B | 0.7510 | 0.8076 | 0.4034 | 0.054* | 0.5 |
H15C | 0.7046 | 0.8250 | 0.2850 | 0.054* | 0.5 |
N1 | 0.60582 (9) | 0.7500 | 0.76224 (12) | 0.0291 (4) | |
O1 | 0.63733 (8) | 0.90193 (18) | 0.78734 (12) | 0.0710 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0220 (9) | 0.0144 (7) | 0.0243 (8) | 0.000 | −0.0010 (6) | 0.000 |
C2 | 0.0202 (8) | 0.0168 (8) | 0.0299 (9) | 0.000 | −0.0016 (7) | 0.000 |
C3 | 0.0205 (8) | 0.0222 (8) | 0.0292 (9) | 0.000 | 0.0038 (7) | 0.000 |
C4 | 0.0262 (9) | 0.0200 (8) | 0.0241 (8) | 0.000 | 0.0003 (7) | 0.000 |
C5 | 0.0214 (8) | 0.0196 (8) | 0.0246 (9) | 0.000 | −0.0041 (7) | 0.000 |
C6 | 0.0211 (8) | 0.0141 (8) | 0.0258 (9) | 0.000 | −0.0005 (6) | 0.000 |
C7 | 0.0208 (8) | 0.0206 (8) | 0.0316 (9) | 0.000 | −0.0009 (7) | 0.000 |
C8 | 0.0277 (9) | 0.0188 (8) | 0.0325 (9) | 0.000 | 0.0064 (7) | 0.000 |
C9 | 0.0353 (10) | 0.0242 (9) | 0.0229 (8) | 0.000 | 0.0041 (7) | 0.000 |
C10 | 0.0271 (9) | 0.0214 (8) | 0.0243 (9) | 0.000 | −0.0031 (7) | 0.000 |
C11 | 0.0223 (9) | 0.0349 (10) | 0.0338 (10) | 0.000 | −0.0036 (7) | 0.000 |
C12 | 0.0302 (9) | 0.0358 (10) | 0.0227 (9) | 0.000 | 0.0021 (7) | 0.000 |
C13 | 0.0738 (11) | 0.0473 (9) | 0.0299 (7) | −0.0109 (8) | 0.0101 (7) | 0.0065 (7) |
C15 | 0.0310 (10) | 0.0371 (11) | 0.0400 (11) | 0.000 | 0.0110 (8) | 0.000 |
N1 | 0.0252 (8) | 0.0363 (9) | 0.0257 (8) | 0.000 | −0.0033 (6) | 0.000 |
O1 | 0.0669 (9) | 0.0493 (7) | 0.0967 (10) | −0.0205 (6) | −0.0519 (7) | 0.0045 (7) |
C1—C10 | 1.413 (2) | C9—H9 | 0.9500 |
C1—C6 | 1.422 (2) | C10—H10 | 0.9500 |
C1—C2 | 1.429 (2) | C11—H11A | 0.9800 |
C2—C3 | 1.369 (2) | C11—H11B | 0.9800 |
C2—C11 | 1.506 (2) | C11—H11C | 0.9800 |
C3—C4 | 1.419 (2) | C12—C13i | 1.5208 (18) |
C3—H3 | 0.9500 | C12—C13 | 1.5209 (18) |
C4—C5 | 1.365 (2) | C12—H12 | 1.0000 |
C4—C12 | 1.523 (2) | C13—H13A | 0.9800 |
C5—C6 | 1.415 (2) | C13—H13B | 0.9800 |
C5—N1 | 1.475 (2) | C13—H13C | 0.9800 |
C6—C7 | 1.417 (2) | C15—H15A | 0.9800 |
C7—C8 | 1.371 (3) | C15—H15B | 0.9800 |
C7—H7 | 0.9500 | C15—H15C | 0.9800 |
C8—C9 | 1.410 (3) | N1—O1 | 1.2035 (13) |
C8—C15 | 1.506 (2) | N1—O1i | 1.2036 (13) |
C9—C10 | 1.364 (2) | ||
C10—C1—C6 | 117.43 (15) | C1—C10—H10 | 119.4 |
C10—C1—C2 | 122.79 (15) | C2—C11—H11A | 109.5 |
C6—C1—C2 | 119.78 (15) | C2—C11—H11B | 109.5 |
C3—C2—C1 | 119.42 (15) | H11A—C11—H11B | 109.5 |
C3—C2—C11 | 120.47 (15) | C2—C11—H11C | 109.5 |
C1—C2—C11 | 120.12 (15) | H11A—C11—H11C | 109.5 |
C2—C3—C4 | 122.79 (15) | H11B—C11—H11C | 109.5 |
C2—C3—H3 | 118.6 | C13i—C12—C13 | 111.02 (17) |
C4—C3—H3 | 118.6 | C13i—C12—C4 | 111.20 (10) |
C5—C4—C3 | 116.35 (16) | C13—C12—C4 | 111.20 (10) |
C5—C4—C12 | 123.60 (16) | C13i—C12—H12 | 107.7 |
C3—C4—C12 | 120.05 (15) | C13—C12—H12 | 107.7 |
C4—C5—C6 | 124.97 (15) | C4—C12—H12 | 107.7 |
C4—C5—N1 | 119.13 (15) | C12—C13—H13A | 109.5 |
C6—C5—N1 | 115.90 (14) | C12—C13—H13B | 109.5 |
C5—C6—C7 | 123.42 (15) | H13A—C13—H13B | 109.5 |
C5—C6—C1 | 116.68 (14) | C12—C13—H13C | 109.5 |
C7—C6—C1 | 119.90 (15) | H13A—C13—H13C | 109.5 |
C8—C7—C6 | 121.47 (16) | H13B—C13—H13C | 109.5 |
C8—C7—H7 | 119.3 | C8—C15—H15A | 109.5 |
C6—C7—H7 | 119.3 | C8—C15—H15B | 109.5 |
C7—C8—C9 | 118.06 (16) | H15A—C15—H15B | 109.5 |
C7—C8—C15 | 121.40 (17) | C8—C15—H15C | 109.5 |
C9—C8—C15 | 120.53 (16) | H15A—C15—H15C | 109.5 |
C10—C9—C8 | 122.02 (16) | H15B—C15—H15C | 109.5 |
C10—C9—H9 | 119.0 | O1—N1—O1i | 122.57 (16) |
C8—C9—H9 | 119.0 | O1—N1—C5 | 118.71 (8) |
C9—C10—C1 | 121.12 (16) | O1i—N1—C5 | 118.71 (8) |
C9—C10—H10 | 119.4 |
Symmetry code: (i) x, −y+3/2, z. |
Acknowledgements
The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse, for the X-ray measurements.
References
Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.