organic compounds
1-Allyl-2-methylpyridinium chloride
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and cLenzing AG, Global R&D, Werkstrasse 2, 4860 Lenzing, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at
The title molecular salt, C9H12N+·Cl−, was obtained by reaction of 2-methylpyridine and allyl chloride. A network of C—H⋯Cl hydrogen bonds is observed in the crystal structure.
Keywords: allyl; chloride; crystal structure; pyridine.
CCDC reference: 1545055
Structure description
Chloride-based ionic liquids (salts melting below 373 K) are suitable solvents for cellulose dissolution (Wang et al., 2012; Liu et al., 2016) and for fibre spinning. The numerous advantages of ionic liquids, such as non-volatility, thermal stability, chemical modifiability, and low melting points are countervailed by their disadvantages, such as aquatic toxicity, corrosivity, and a high energy input required for pulp preparation and removal of water (Bentivoglio et al., 2006). In particular, it has been found that some ionic liquids promote degradation of cellulose. The molecular mass distribution of the reconstituted cellulose samples was determined by (Schelosky et al., 1999). Degradation was exceptionally strong (from 200 kDa down to 24 kDa) in the present ionic liquid. The solubility of cellulose in a series of pyridinium chlorides was studied by quantum-chemical calculations (Sashina et al., 2012).
The title compound has been described as a `sirupy liquid' (Ramsay, 1876). It has now been crystallized but still qualifies as an ionic liquid (melting at 367 K). In the the allyl group is twisted out of the plane of the heterocyclic ring. Weak C—H⋯Cl hydrogen bonds (Fig. 1, Table 1) create a three-dimensional network in which the chloride ions are sixfold coordinated toward the pyridinium cations (Fig. 2).
Related structures with similar hydrogen bond networks include N-allylpyrrolidinium chloride (Laus et al., 2008), N-allylpyridinium bromide (Seethalakshmi et al., 2013) and N-allylimidazolium iodides (Fei et al., 2006).
Synthesis and crystallization
To 2-methylpyridine (18.9 g, 0.20 mol) was added an excess of allyl chloride (18.6 g, 0.24 mol). The reaction mixture was refluxed for 72 h. Excess allyl chloride was removed under reduced pressure. The crude product was washed with Et2O (50 ml) and dried on a high vacuum line giving 1-allyl-2-methylpyridinium chloride as a brown powder (17.4 g, 51%), m.p. 364–367 K. Colourless plates were recrystallized from a solvent mixture of acetone/CH2Cl2. 1H NMR (300 MHz, DMSO-d6): δ 2.93 (3H, s), 5.10 (1H, d, J = 17.2 Hz), 5.35 (1H, d, J = 10.6 Hz), 5.66 (2H, d, J = 5.6 Hz), 6.00 (1H, m), 7.92 (1H, t, J = 6.8 Hz), 8.00 (1H, d, J = 7.9 Hz), 8.41 (1H, t, J = 7.6 Hz), 9.70 (1H, d, J = 5.9) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 20.5, 60.0, 120.9, 126.2, 130.0, 130.1, 145.5, 146.9, 155.0 p.p.m. IR (neat): ν 3009, 2921, 2438, 1622, 1573, 1503, 1478, 1455, 1421, 1296, 1158, 1141, 1053, 1004, 930, 829, 794, 770, 710, 663 cm−1.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1545055
https://doi.org/10.1107/S2414314617005983/hb4138sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617005983/hb4138Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005983/hb4138Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314617005983/hb4138Isup4.cml
Data collection: X-AREA (Stoe & Cie, 1997); cell
X-AREA (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).C9H12N+·Cl− | Z = 2 |
Mr = 169.65 | F(000) = 180 |
Triclinic, P1 | Dx = 1.234 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9617 (17) Å | Cell parameters from 3556 reflections |
b = 7.5941 (19) Å | θ = 2.2–27.2° |
c = 9.464 (2) Å | µ = 0.35 mm−1 |
α = 86.06 (2)° | T = 173 K |
β = 82.118 (19)° | Fragment of a plate, colorless |
γ = 67.102 (18)° | 0.4 × 0.38 × 0.1 mm |
V = 456.48 (19) Å3 |
Stoe IPDS 2 diffractometer | 1616 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1465 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.4°, θmin = 2.2° |
rotation method scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −8→9 |
Tmin = 0.904, Tmax = 0.985 | l = −11→11 |
3066 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0261P)2 + 0.1555P] where P = (Fo2 + 2Fc2)/3 |
1616 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.89617 (6) | −0.22917 (5) | 0.72298 (4) | 0.02896 (12) | |
N1 | 1.00030 (18) | 0.21870 (17) | 0.71106 (12) | 0.0243 (3) | |
C1 | 0.6310 (2) | 0.2941 (2) | 0.67241 (16) | 0.0294 (3) | |
H1 | 0.6544 | 0.1621 | 0.6801 | 0.035* | |
C2 | 1.3379 (2) | −0.0309 (2) | 0.68650 (17) | 0.0314 (3) | |
H2 | 1.4525 | −0.1182 | 0.6277 | 0.038* | |
C3 | 1.1628 (2) | 0.0914 (2) | 0.62917 (16) | 0.0281 (3) | |
H3 | 1.1553 | 0.0868 | 0.5301 | 0.034* | |
C4 | 0.8179 (2) | 0.3488 (2) | 0.63906 (15) | 0.0272 (3) | |
H4A | 0.8591 | 0.3451 | 0.5346 | 0.033* | |
H4B | 0.7789 | 0.4814 | 0.67 | 0.033* | |
C5 | 1.0027 (2) | 0.2277 (2) | 0.85415 (15) | 0.0268 (3) | |
C6 | 1.1772 (2) | 0.1022 (2) | 0.91430 (16) | 0.0322 (3) | |
H6 | 1.1808 | 0.1042 | 1.0141 | 0.039* | |
C7 | 0.8237 (3) | 0.3733 (2) | 0.94055 (16) | 0.0350 (4) | |
H7A | 0.8066 | 0.5014 | 0.9031 | 0.052* | |
H7B | 0.8518 | 0.3622 | 1.0401 | 0.052* | |
H7C | 0.6948 | 0.352 | 0.9352 | 0.052* | |
C8 | 1.3453 (2) | −0.0254 (2) | 0.83142 (17) | 0.0331 (3) | |
H8 | 1.4654 | −0.1089 | 0.8734 | 0.04* | |
C9 | 0.4376 (2) | 0.4194 (2) | 0.69139 (19) | 0.0394 (4) | |
H9A | 0.4102 | 0.5522 | 0.6842 | 0.047* | |
H9B | 0.3246 | 0.3776 | 0.7123 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02934 (19) | 0.02856 (19) | 0.02593 (19) | −0.00806 (14) | −0.00311 (14) | 0.00060 (13) |
N1 | 0.0225 (6) | 0.0264 (6) | 0.0247 (6) | −0.0108 (5) | −0.0011 (5) | 0.0002 (5) |
C1 | 0.0283 (7) | 0.0250 (7) | 0.0353 (8) | −0.0100 (6) | −0.0063 (6) | 0.0000 (6) |
C2 | 0.0242 (7) | 0.0315 (8) | 0.0357 (8) | −0.0093 (6) | 0.0026 (6) | −0.0024 (6) |
C3 | 0.0279 (7) | 0.0321 (8) | 0.0254 (7) | −0.0137 (6) | 0.0012 (6) | −0.0032 (6) |
C4 | 0.0262 (7) | 0.0275 (7) | 0.0258 (7) | −0.0083 (6) | −0.0038 (6) | 0.0022 (6) |
C5 | 0.0283 (7) | 0.0299 (7) | 0.0245 (7) | −0.0149 (6) | −0.0001 (6) | 0.0003 (6) |
C6 | 0.0328 (8) | 0.0390 (8) | 0.0269 (8) | −0.0162 (7) | −0.0059 (6) | 0.0040 (6) |
C7 | 0.0368 (8) | 0.0370 (9) | 0.0269 (8) | −0.0108 (7) | 0.0006 (7) | −0.0024 (6) |
C8 | 0.0256 (7) | 0.0358 (8) | 0.0378 (9) | −0.0117 (6) | −0.0071 (7) | 0.0055 (7) |
C9 | 0.0288 (8) | 0.0333 (8) | 0.0542 (11) | −0.0108 (7) | −0.0037 (7) | 0.0015 (7) |
N1—C3 | 1.351 (2) | C4—H4B | 0.9900 |
N1—C5 | 1.364 (2) | C5—C6 | 1.385 (2) |
N1—C4 | 1.4882 (19) | C5—C7 | 1.489 (2) |
C1—C9 | 1.307 (2) | C6—C8 | 1.376 (2) |
C1—C4 | 1.502 (2) | C6—H6 | 0.9500 |
C1—H1 | 0.9500 | C7—H7A | 0.9800 |
C2—C3 | 1.368 (2) | C7—H7B | 0.9800 |
C2—C8 | 1.383 (2) | C7—H7C | 0.9800 |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C3—H3 | 0.9500 | C9—H9A | 0.9500 |
C4—H4A | 0.9900 | C9—H9B | 0.9500 |
C3—N1—C5 | 121.20 (13) | N1—C5—C6 | 118.28 (14) |
C3—N1—C4 | 117.55 (13) | N1—C5—C7 | 119.86 (14) |
C5—N1—C4 | 121.25 (13) | C6—C5—C7 | 121.84 (14) |
C9—C1—C4 | 123.20 (15) | C8—C6—C5 | 120.98 (15) |
C9—C1—H1 | 118.4 | C8—C6—H6 | 119.5 |
C4—C1—H1 | 118.4 | C5—C6—H6 | 119.5 |
C3—C2—C8 | 118.97 (15) | C5—C7—H7A | 109.5 |
C3—C2—H2 | 120.5 | C5—C7—H7B | 109.5 |
C8—C2—H2 | 120.5 | H7A—C7—H7B | 109.5 |
N1—C3—C2 | 121.21 (15) | C5—C7—H7C | 109.5 |
N1—C3—H3 | 119.4 | H7A—C7—H7C | 109.5 |
C2—C3—H3 | 119.4 | H7B—C7—H7C | 109.5 |
N1—C4—C1 | 112.07 (12) | C6—C8—C2 | 119.33 (15) |
N1—C4—H4A | 109.2 | C6—C8—H8 | 120.3 |
C1—C4—H4A | 109.2 | C2—C8—H8 | 120.3 |
N1—C4—H4B | 109.2 | C1—C9—H9A | 120.0 |
C1—C4—H4B | 109.2 | C1—C9—H9B | 120.0 |
H4A—C4—H4B | 107.9 | H9A—C9—H9B | 120.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1 | 0.95 | 2.82 | 3.701 (2) | 155 |
C7—H7A···Cl1i | 0.98 | 2.78 | 3.695 (2) | 157 |
C4—H4A···Cl1ii | 0.99 | 2.76 | 3.698 (2) | 159 |
C4—H4B···Cl1i | 0.99 | 2.72 | 3.609 (2) | 149 |
C6—H6···Cl1iii | 0.95 | 2.64 | 3.545 (2) | 161 |
C3—H3···Cl1ii | 0.95 | 2.57 | 3.454 (2) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y, −z+1; (iii) −x+2, −y, −z+2. |
References
Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenz. Ber. 86, 154–161. CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fei, Z., Kuang, D., Zhao, D., Klein, C., Ang, W. H., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2006). Inorg. Chem. 45, 10407–10409. Web of Science CSD CrossRef PubMed CAS Google Scholar
Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H. & Nauer, G. (2008). CrystEngComm, 10, 748–752. CrossRef CAS Google Scholar
Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246–6254. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ramsay, W. (1876). Philos. Mag. Ser. 5, 2, 269–281. Google Scholar
Sashina, E. S., Kashirskii, D. A. & Martynova, E. V. (2012). Russ. J. Gen. Chem. 82, 729–735. CrossRef CAS Google Scholar
Schelosky, N., Röder, T. & Baldinger, T. (1999). Papier 53, 728–738. CAS Google Scholar
Seethalakshmi, T., Venkatesan, P., Nallu, M., Lynch, D. E. & Thamotharan, S. (2013). Acta Cryst. E69, o884. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1997). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Wang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519–1537. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.