organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E)-3-Phenyl­prop-2-en-1-yl thio­cyanate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malakand, Pakistan, bInstitute of Chemical Sciences, University of Swat, Khyber Pakhtunkhwa, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dHEJ Research Institute, University of Karachi, Karachi, Pakistan
*Correspondence e-mail: ekhan@uom.edu.pk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 March 2017; accepted 11 April 2017; online 21 April 2017)

In the title compound, C10H9NS, the C—S—C bond angle is 99.41 (9)° and the dihedral angle between the trans-alkene fragment and the benzene ring is 16.49 (19)°. In the crystal, inversion dimers linked by pairs of extremely weak C—H⋯N inter­actions occur, as does a short S⋯N contact [3.2258 (19) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Alkyl thio­cyanates are synthetic precursors for the preparation of sulfur-containing organic compounds such as di­sulfides (Lu et al., 2014[Lu, X., Wang, H. R., Gao, D., Sun, D. & Bi, X. (2014). RSC Adv. 4, 28794-28797.]) and various heterocyclic compounds (Vikharev et al., 2005[Vikharev, Y. B., Shklyaev, Y. V., Anikina, L., Kolla, V. & Tolstikov, A. (2005). Pharm. Chem. J. 39, 405-408.]; Batanero et al., 2002[Batanero, B., Barba, F. & Martín, A. (2002). J. Org. Chem. 67, 2369-2371.]). The title compound (Fig. 1[link]) arose during our studies of unsymmetrical thio­urea derivatives.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% displacement ellipsoids.

The C—S—C bond angle is 99.41 (9)° and the dihedral angle between the C2/C3/C4/C5 fragment and the benzene ring is 16.49 (19)°. A quantum-chemical calculation for this mol­ecule (see Supporting information) gave a C—S—C angle of 160.0°. In the crystal, extremely weak C—H⋯N inter­actions (Table 1[link]) generate inversion dimers with an R22(10) motif and short S⋯N contacts [3.2258 (19) Å, compared to a van der Waals radius sum of 3.35 Å] are also observed: these contacts link the dimers into [100] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯N1i 0.97 2.70 3.652 (2) 167
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Unit-cell packing diagram (left) and supra­molecular chain (right insert) of the title compound showing the C—H⋯N hydrogen bonds and N—S inter­actions.

Synthesis and crystallization

A round-bottom flask was charged with cinammyl chloride (1 ml, 7.2 mmol) in acetone. The solution was stirred vigorously and NH4SCN (0.5 g, 7.2 mmol) was added. The reaction mixture was heated to reflux for 30 min and then poured into crushed ice. The solid product was separated and dissolved in CH2Cl2. After 24 h, colorless prismatic crystals appeared in solution. Crystals of appropriate quality of the same compound were also obtained from n-hexane solution. A reaction scheme is given in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H9NS
Mr 175.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.0108 (5), 7.9243 (6), 19.8388 (16)
β (°) 94.271 (4)
V3) 942.33 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.37 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.902, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 8591, 2319, 1697
Rint 0.022
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.05
No. of reflections 2319
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(2E)-3-Phenylprop-2-en-1-yl thiocyanate top
Crystal data top
C10H9NSF(000) = 368
Mr = 175.24Dx = 1.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0108 (5) ÅCell parameters from 1697 reflections
b = 7.9243 (6) Åθ = 2.8–28.4°
c = 19.8388 (16) ŵ = 0.29 mm1
β = 94.271 (4)°T = 296 K
V = 942.33 (13) Å3Prism, colourless
Z = 40.37 × 0.27 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2319 independent reflections
Radiation source: fine-focus sealed tube1697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
k = 910
Tmin = 0.902, Tmax = 0.932l = 2624
8591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.2661P]
where P = (Fo2 + 2Fc2)/3
2319 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66511 (8)0.22408 (8)0.47818 (3)0.0691 (2)
N11.1334 (3)0.2485 (3)0.48932 (12)0.0962 (7)
C10.9445 (3)0.2408 (3)0.48395 (10)0.0633 (5)
C20.5958 (3)0.3977 (3)0.41956 (10)0.0676 (5)
H2A0.43480.40370.41140.081*
H2B0.64570.50270.44080.081*
C30.6953 (3)0.3822 (2)0.35388 (9)0.0564 (4)
H30.63980.30010.32360.068*
C40.8586 (3)0.4791 (2)0.33626 (9)0.0522 (4)
H40.91400.55710.36830.063*
C50.9632 (3)0.47826 (19)0.27201 (8)0.0465 (4)
C60.8665 (3)0.3994 (2)0.21446 (9)0.0534 (4)
H60.73020.34470.21620.064*
C70.9699 (3)0.4015 (2)0.15505 (9)0.0623 (5)
H70.90310.34840.11690.075*
C81.1715 (3)0.4817 (2)0.15159 (10)0.0660 (5)
H81.24130.48250.11130.079*
C91.2691 (3)0.5602 (2)0.20754 (11)0.0650 (5)
H91.40570.61430.20530.078*
C101.1658 (3)0.5595 (2)0.26705 (10)0.0571 (4)
H101.23290.61450.30470.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (3)0.0917 (4)0.0609 (3)0.0079 (2)0.0080 (2)0.0169 (3)
N10.0577 (11)0.1294 (19)0.1012 (16)0.0042 (11)0.0046 (10)0.0073 (13)
C10.0601 (11)0.0766 (13)0.0537 (10)0.0024 (9)0.0081 (8)0.0006 (9)
C20.0608 (11)0.0811 (14)0.0625 (11)0.0112 (10)0.0148 (8)0.0083 (10)
C30.0561 (10)0.0601 (11)0.0533 (10)0.0004 (8)0.0049 (7)0.0036 (8)
C40.0591 (10)0.0442 (9)0.0529 (10)0.0018 (7)0.0015 (7)0.0023 (7)
C50.0516 (9)0.0361 (8)0.0516 (9)0.0024 (6)0.0022 (7)0.0037 (7)
C60.0542 (9)0.0490 (10)0.0567 (10)0.0080 (7)0.0026 (7)0.0016 (8)
C70.0783 (12)0.0558 (11)0.0529 (10)0.0051 (9)0.0046 (9)0.0020 (8)
C80.0779 (12)0.0569 (12)0.0658 (12)0.0006 (9)0.0235 (10)0.0063 (9)
C90.0574 (10)0.0531 (11)0.0863 (14)0.0071 (8)0.0177 (9)0.0056 (10)
C100.0573 (10)0.0462 (10)0.0668 (11)0.0056 (8)0.0012 (8)0.0031 (8)
Geometric parameters (Å, º) top
S1—C11.680 (2)C5—C61.390 (2)
S1—C21.829 (2)C6—C71.373 (2)
N1—C11.134 (2)C6—H60.9300
C2—C31.479 (2)C7—C81.374 (3)
C2—H2A0.9700C7—H70.9300
C2—H2B0.9700C8—C91.366 (3)
C3—C41.313 (2)C8—H80.9300
C3—H30.9300C9—C101.374 (3)
C4—C51.463 (2)C9—H90.9300
C4—H40.9300C10—H100.9300
C5—C101.388 (2)
C1—S1—C299.41 (9)C6—C5—C4122.49 (15)
N1—C1—S1178.0 (2)C7—C6—C5120.76 (16)
C3—C2—S1114.20 (14)C7—C6—H6119.6
C3—C2—H2A108.7C5—C6—H6119.6
S1—C2—H2A108.7C6—C7—C8120.36 (18)
C3—C2—H2B108.7C6—C7—H7119.8
S1—C2—H2B108.7C8—C7—H7119.8
H2A—C2—H2B107.6C9—C8—C7119.79 (18)
C4—C3—C2123.06 (18)C9—C8—H8120.1
C4—C3—H3118.5C7—C8—H8120.1
C2—C3—H3118.5C8—C9—C10120.13 (17)
C3—C4—C5127.41 (16)C8—C9—H9119.9
C3—C4—H4116.3C10—C9—H9119.9
C5—C4—H4116.3C9—C10—C5121.19 (17)
C10—C5—C6117.75 (16)C9—C10—H10119.4
C10—C5—C4119.76 (15)C5—C10—H10119.4
C1—S1—C2—C358.62 (17)C5—C6—C7—C80.1 (3)
S1—C2—C3—C4108.73 (19)C6—C7—C8—C90.2 (3)
C2—C3—C4—C5177.71 (16)C7—C8—C9—C100.2 (3)
C3—C4—C5—C10164.85 (18)C8—C9—C10—C50.7 (3)
C3—C4—C5—C615.7 (3)C6—C5—C10—C90.9 (3)
C10—C5—C6—C70.5 (2)C4—C5—C10—C9179.60 (16)
C4—C5—C6—C7179.97 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N1i0.972.703.652 (2)167
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We are thankful to Professor Dr Muhammad Raza Shah for the EI–MS analysis of the title compound.

Funding information

Funding for this research was provided by: Higher Education Commission Pakistan (Access to the Scientific Instrumentation project).

References

First citationBatanero, B., Barba, F. & Martín, A. (2002). J. Org. Chem. 67, 2369–2371.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLu, X., Wang, H. R., Gao, D., Sun, D. & Bi, X. (2014). RSC Adv. 4, 28794–28797.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVikharev, Y. B., Shklyaev, Y. V., Anikina, L., Kolla, V. & Tolstikov, A. (2005). Pharm. Chem. J. 39, 405–408.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds