organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-2-nitro-1-(2-phenyl­eth­yl)benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Shri Pillappa College of Engineering, Bengaluru 560 089, India, bPhysics and Basic Science Department, Faculty of Engineering Technology, Albalqa Applied University, Amman 11134, Jordan, cDepartment of Chemistry, Bharathi College, Bharthi Nagara, Mandya 571 422, India, dDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 401, India, eDepartment of Chemistry, Sambhram Institute of Technology, Bengaluru 560 097, India, fDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and gPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madan.mx@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 March 2017; accepted 11 April 2017; online 21 April 2017)

In the title compound, C14H12ClNO2, the dihedral angle between the aromatic rings is 6.09 (17)° and the Car—C—C—Car torsion angle is −179.4 (3)°. The nitro group is close to coplanar with its attached ring [dihedral angle = 7.9 (2)°] and the Cl atom is disordered over two adjacent sites in a 0.54 (4):0.46 (4) ratio. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into C(6) [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of out inter­est in the synthesis and crystal structures of 4-chloro­nitro­benzene derivatives, the title compound (Fig. 1[link]) is reported here.

[Figure 1]
Figure 1
A view of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level.

The dihedral angle between the aromatic rings is 6.09 (17)° and the C6—C7—C8—C9 torsion angle is −179.4 (3)°. The nitro group is close to being coplanar with its attached ring [dihedral angle = 7.9 (2)°]. In the crystal, C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into C(6) [001] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.54 3.462 (5) 175
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

4-Chloro­nitro­benzene (1.57 g, 0.01 mol) was dissolved in 25 ml of ethanol and styrene (1.04 g, 0.01 mol) was dissolved in 25 ml of ethanol. The solutions were mixed and stirred in a beaker at 30° C for 1 h. The mixture was kept aside for two days at room temperature. The formed product was filtered and dried in a vacuum desiccator over phospho­rous pentoxide. The product was recrystallized from toluene solution by slow evaporation (m.p. 399–401 K) in the form of colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The Cl atom is disordered over two adjacent sites in a 0.54 (4):0.46 (4) ratio.

Table 2
Experimental details

Crystal data
Chemical formula C14H12ClNO2
Mr 261.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.201 (3), 7.3285 (12), 12.974 (4)
β (°) 105.89 (2)
V3) 1298.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.19 × 0.18 × 0.15
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.947, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 13474, 2554, 1389
Rint 0.095
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.220, 1.04
No. of reflections 2554
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Chloro-2-nitro-1-(2-phenylethyl)benzene top
Crystal data top
C14H12ClNO2Dx = 1.338 Mg m3
Mr = 261.70Melting point: 399 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.201 (3) ÅCell parameters from 2554 reflections
b = 7.3285 (12) Åθ = 3–52°
c = 12.974 (4) ŵ = 0.29 mm1
β = 105.89 (2)°T = 293 K
V = 1298.6 (5) Å3Block, colourless
Z = 40.19 × 0.18 × 0.15 mm
F(000) = 544
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.095
profile data from ω–scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
h = 1717
Tmin = 0.947, Tmax = 0.960k = 99
13474 measured reflectionsl = 1615
2554 independent reflections2554 standard reflections
1389 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.095P)2 + 0.1859P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2554 reflectionsΔρmax = 0.18 e Å3
173 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.4908 (4)0.3295 (6)0.5958 (8)0.101 (2)0.54 (4)
O10.7685 (3)0.1384 (5)0.4195 (2)0.1401 (13)
O20.6890 (3)0.0951 (6)0.3611 (3)0.1827 (18)
N10.7168 (2)0.0150 (5)0.4293 (2)0.0921 (9)
C10.6844 (2)0.0018 (4)0.5279 (2)0.0626 (8)
C20.6156 (2)0.1349 (4)0.5248 (3)0.0736 (9)
H20.59270.20640.46390.088*
C30.5815 (2)0.1608 (4)0.6111 (3)0.0827 (10)
C40.6153 (3)0.0577 (5)0.6996 (3)0.1003 (12)
H40.59170.07570.75900.120*
C50.6847 (3)0.0743 (5)0.7018 (3)0.0945 (11)
H50.70690.14470.76330.113*
C60.7228 (2)0.1067 (4)0.6156 (2)0.0675 (8)
C70.7986 (2)0.2541 (4)0.6279 (3)0.0842 (10)
H7A0.84390.22100.58710.101*
H7B0.83540.26240.70270.101*
C80.7545 (2)0.4399 (4)0.5905 (3)0.0904 (11)
H8A0.71730.43170.51580.108*
H8B0.70980.47400.63180.108*
C90.8315 (2)0.5853 (4)0.6023 (3)0.0736 (9)
C100.8801 (3)0.6110 (5)0.5244 (3)0.0948 (11)
H100.86410.53910.46300.114*
C110.9520 (3)0.7420 (6)0.5368 (3)0.1023 (12)
H110.98300.75820.48290.123*
C120.9783 (3)0.8470 (5)0.6250 (3)0.0918 (11)
H121.02730.93420.63250.110*
C130.9318 (3)0.8232 (4)0.7035 (3)0.0874 (11)
H130.94910.89540.76470.105*
C140.8591 (2)0.6926 (4)0.6925 (3)0.0790 (9)
H140.82860.67730.74680.095*
Cl1A0.5021 (10)0.3187 (16)0.634 (3)0.169 (4)0.46 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0740 (19)0.069 (3)0.161 (4)0.0124 (12)0.031 (2)0.015 (3)
O10.171 (3)0.143 (3)0.132 (2)0.030 (2)0.084 (2)0.025 (2)
O20.236 (4)0.223 (4)0.114 (2)0.069 (4)0.089 (3)0.069 (3)
N10.100 (2)0.102 (2)0.080 (2)0.0064 (18)0.0352 (17)0.0007 (18)
C10.0647 (18)0.0570 (16)0.0696 (18)0.0061 (13)0.0240 (14)0.0066 (14)
C20.0651 (19)0.0626 (18)0.090 (2)0.0003 (14)0.0151 (17)0.0029 (16)
C30.069 (2)0.0570 (19)0.130 (3)0.0019 (15)0.041 (2)0.0143 (19)
C40.133 (3)0.076 (2)0.118 (3)0.008 (2)0.077 (3)0.013 (2)
C50.142 (3)0.068 (2)0.080 (2)0.004 (2)0.040 (2)0.0088 (17)
C60.0700 (19)0.0542 (17)0.077 (2)0.0004 (14)0.0180 (16)0.0046 (15)
C70.074 (2)0.065 (2)0.106 (2)0.0045 (16)0.0099 (18)0.0105 (18)
C80.076 (2)0.0575 (19)0.134 (3)0.0004 (15)0.022 (2)0.0109 (19)
C90.0648 (19)0.0514 (17)0.101 (2)0.0005 (14)0.0160 (17)0.0065 (17)
C100.105 (3)0.080 (2)0.100 (3)0.018 (2)0.030 (2)0.0054 (19)
C110.102 (3)0.096 (3)0.118 (3)0.020 (2)0.046 (2)0.010 (3)
C120.078 (2)0.073 (2)0.116 (3)0.0160 (17)0.014 (2)0.016 (2)
C130.086 (3)0.066 (2)0.100 (3)0.0012 (17)0.008 (2)0.0001 (18)
C140.075 (2)0.063 (2)0.101 (2)0.0045 (16)0.0282 (18)0.0085 (18)
Cl1A0.103 (4)0.162 (6)0.252 (12)0.030 (3)0.068 (5)0.083 (5)
Geometric parameters (Å, º) top
Cl1—C31.757 (6)C7—H7B0.9700
O1—N11.193 (4)C7—C81.521 (4)
O2—N11.182 (4)C8—H8A0.9700
N1—C11.479 (4)C8—H8B0.9700
C1—C21.374 (4)C8—C91.505 (4)
C1—C61.373 (4)C9—C101.384 (5)
C2—H20.9300C9—C141.374 (4)
C2—C31.350 (5)C10—H100.9300
C3—C41.348 (5)C10—C111.378 (5)
C3—Cl1A1.697 (9)C11—H110.9300
C4—H40.9300C11—C121.344 (5)
C4—C51.376 (5)C12—H120.9300
C5—H50.9300C12—C131.369 (5)
C5—C61.389 (5)C13—H130.9300
C6—C71.502 (4)C13—C141.386 (4)
C7—H7A0.9700C14—H140.9300
O1—N1—C1120.1 (3)C8—C7—H7A109.0
O2—N1—O1121.8 (4)C8—C7—H7B109.0
O2—N1—C1118.1 (3)C7—C8—H8A109.2
C2—C1—N1114.9 (3)C7—C8—H8B109.2
C6—C1—N1121.5 (3)H8A—C8—H8B107.9
C6—C1—C2123.6 (3)C9—C8—C7112.2 (3)
C1—C2—H2120.3C9—C8—H8A109.2
C3—C2—C1119.3 (3)C9—C8—H8B109.2
C3—C2—H2120.3C10—C9—C8121.0 (3)
C2—C3—Cl1115.1 (4)C14—C9—C8121.5 (3)
C2—C3—Cl1A130.3 (12)C14—C9—C10117.5 (3)
C4—C3—Cl1124.7 (4)C9—C10—H10119.6
C4—C3—C2120.2 (3)C11—C10—C9120.7 (3)
C4—C3—Cl1A109.4 (12)C11—C10—H10119.6
C3—C4—H4120.1C10—C11—H11119.3
C3—C4—C5119.8 (3)C12—C11—C10121.5 (4)
C5—C4—H4120.1C12—C11—H11119.3
C4—C5—H5118.7C11—C12—H12120.6
C4—C5—C6122.6 (3)C11—C12—C13118.8 (3)
C6—C5—H5118.7C13—C12—H12120.6
C1—C6—C5114.5 (3)C12—C13—H13119.7
C1—C6—C7127.9 (3)C12—C13—C14120.6 (4)
C5—C6—C7117.6 (3)C14—C13—H13119.7
C6—C7—H7A109.0C9—C14—C13120.8 (3)
C6—C7—H7B109.0C9—C14—H14119.6
C6—C7—C8112.9 (3)C13—C14—H14119.6
H7A—C7—H7B107.8
Cl1—C3—C4—C5178.1 (4)C4—C5—C6—C11.0 (5)
O1—N1—C1—C2172.2 (3)C4—C5—C6—C7179.7 (3)
O1—N1—C1—C69.1 (5)C5—C6—C7—C890.9 (4)
O2—N1—C1—C26.8 (5)C6—C1—C2—C31.2 (5)
O2—N1—C1—C6171.9 (4)C6—C7—C8—C9179.4 (3)
N1—C1—C2—C3179.9 (3)C7—C8—C9—C1084.0 (4)
N1—C1—C6—C5179.9 (3)C7—C8—C9—C1493.4 (4)
N1—C1—C6—C70.7 (5)C8—C9—C10—C11178.7 (3)
C1—C2—C3—Cl1177.9 (3)C8—C9—C14—C13178.5 (3)
C1—C2—C3—C40.4 (5)C9—C10—C11—C121.0 (6)
C1—C2—C3—Cl1A176.5 (6)C10—C9—C14—C131.0 (5)
C1—C6—C7—C888.3 (4)C10—C11—C12—C130.5 (6)
C2—C1—C6—C51.4 (4)C11—C12—C13—C140.3 (6)
C2—C1—C6—C7179.3 (3)C12—C13—C14—C90.6 (5)
C2—C3—C4—C50.0 (6)C14—C9—C10—C111.2 (5)
C3—C4—C5—C60.3 (6)Cl1A—C3—C4—C5176.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.543.462 (5)175
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. PN thanks Bharthi College, Maddur, for research facilities.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds