organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[Bis(methyl­sulfan­yl)methyl­­idene]-2-meth­­oxy­benzohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH, 03435-2001, USA
*Correspondence e-mail: manoj_vns2005@yahoo.co.in

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 16 March 2017; accepted 29 March 2017; online 4 April 2017)

In the title compound, C11H14N2O2S2, the diethyl di­thio­ate groups are inclined slightly to the benzoyl ring, making a dihedral angle of 14.0 (3)°. A short intra­molecular N—H⋯O contact generates an S(6) ring. In the crystal, C—H⋯O contacts generate a C(8) chain motif along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­thio­carbaza­tes and their S-alk­yl/aryl esters containing nitro­gen–sulfur donor atoms have shown inter­esting biological properties (Bharti et al., 2000[Bharti, N., Maurya, M. R., Naqvi, F., Bhattcharya, A., Bhattacharya, S. & Azam, A. (2000). Eur. J. Med. Chem. 35, 481-486.]). Some dimethyl benzoyl­carbonohydrazonodi­thio­ates exhibit activity against Mycobacterium tuberculosis (Gobis et al., 2011[Gobis, K., Foks, H., Zwolska, Z., Augustynowicz-Kopeć, E., Główka, M. L., Olczak, A. & Sabisz, M. (2011). Monatsh. Chem. 142, 1137-1142.]). The S-alk­yl/aryl esters exhibit efficient capacity for coordination with metals to form complexes (Ali et al., 2008[Ali, M. A., Mirza, A. H., Hamid, M. H. S. A., Bernhardt, P. V., Atchade, O., Song, X., Eng, G. & May, L. (2008). Polyhedron, 27, 977-984.]; Singh et al., 2010[Singh, N. K., Bharty, M. K., Kushawaha, S. K., Singh, U. P. & Tyagi, P. (2010). Polyhedron, 29, 1902-1909.], 2012[Singh, M., Bharty, M. K., Singh, A., Kashyap, S., Singh, U. P. & Singh, N. K. (2012). Transition Met. Chem. 37, 695-703.]). The S-alk­yl/aryl esters derived from potassium salts of N-aroylhydrazinecarbodi­thio­ates have been found to be more stable towards cyclization compared to potassium N-aroylhydrazinecarbodi­thio­ates and form stable complexes with transition metal ions (Singh et al., 2009[Singh, N. K., Kushawaha, S. K., Bharty, M. K., Dulare, R. & Butcher, R. J. (2009). J. Mol. Struct. 936, 257-263.]; Bharty et al., 2012[Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34-41.]).

In the title compound, the sum of the bond angles around C9 (360°) and the S1—C9—S2 bond angle of 117.39 (11)° clearly indicate sp2 behavior similar to other reported bis-alkyl di­thio­esters (Nath et al., 2015[Nath, P., Bharty, M. K., Chaurasia, R., Kumari, S. & Gupta, S. K. (2015). Acta Cryst. E71, o967-o968.]; Gobis et al., 2011[Gobis, K., Foks, H., Zwolska, Z., Augustynowicz-Kopeć, E., Główka, M. L., Olczak, A. & Sabisz, M. (2011). Monatsh. Chem. 142, 1137-1142.]). The dihedral angle between the bis-methyl­sulfanyl­methyl­idene group and the benzoyl ring is 14.0 (3)°. The C8—N1 and C9—N2 bond lengths [1.347 (2) and 1.285 (3) Å, respectively] are inter­mediate between typical C—N and C=N bond lengths, suggesting delocalization of the π electron density over the C8/N1/N2/C9 linkage (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.]). In addition, an intra­molecular N—H⋯O hydrogen bond is observed (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.78 (3) 1.97 (3) 2.627 (2) 141 (2)
C10—H10A⋯O2i 0.98 2.37 3.326 (3) 166
C11—H11A⋯O2ii 0.98 2.61 3.341 (3) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of title compound, C11H14N2O2S2 with displacement ellipsoids drawn at the 30% probability level.

The crystal packing features inter­molecular C—H⋯O hydrogen bonds between H atoms of the bis-methyl­sulfanyl­methyl­idene group and the O atom of the benzoyl group, forming zigzag chains along the b axis direction (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
The packing of title compound, C11H14N2O2S2 viewed along the a axis. Dashed lines indicate intra­molecular N—H⋯O and inter­molecular C—H⋯O hydrogen bonds.

Synthesis and crystallization

The title compound was synthesized by the dropwise addition of methyl iodide (20.0 mmol, 1.30 ml) to a suspension of potassium (2-meth­oxybenzo­yl)hydrazinecarbodi­thio­ate (10.0 mmol, 2.38 g) in ethanol (20 ml) and stirring the reaction mixture for a period of 3–4 h. The resulting solution was acidified with dilute CH3COOH (20% v/v), which yielded a white precipitate. This was washed with water and dried in vacuo. Colorless crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution over a period of 7 d (Fig. 3[link]). (Yield 65%; m.p. 400–402 K). Analysis calculated for C11H14N2O2S2 (%): C, 48.87; H, 5.20; N, 10.36; S, 23.71. Found: C, 49.12; H, 5.35; N, 10.22; S, 23.44. IR (selected, KBr): 3261 [ν(N—H)], 1654 [ν(C=O)], 1078 [ν(N—N)], 756 [ν(C—S)] cm-1. 1H NMR (DMSO-d6); δ (p.p.m.) = 11.19 (s, 1H, NH), 7.96–7.01 (m, 4H, C6H4, phen­yl), 3.96 (s, 3H, –OCH3), 2.43 (s, 6H, –CH3). 13C NMR (DMSO-d6); δ (p.p.m.) = 165.3 (C9), 160.3 (C8), 157.6 (C1), 134.2 (C3), 131.8 (C5), 121.8 (C4), 121.0 (C6), 112.6 (C2), 56.8 (C7), 17.7–15.5 (C10, C11).

[Figure 3]
Figure 3
Reaction scheme showing the synthesis of the title compound, C11H14N2O2S2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H14N2O2S2
Mr 270.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 7.7829 (3), 7.4284 (3), 21.9087 (7)
β (°) 94.399 (3)
V3) 1262.91 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.77
Crystal size (mm) 0.50 × 0.47 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.290, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4470, 2367, 2189
Rint 0.039
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.08
No. of reflections 2367
No. of parameters 162
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 20015b).

N'-[Bis(methylsulfanyl)methylidene]-2-methoxybenzohydrazide top
Crystal data top
C11H14N2O2S2F(000) = 568
Mr = 270.36Dx = 1.422 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.7829 (3) ÅCell parameters from 2383 reflections
b = 7.4284 (3) Åθ = 6.7–71.3°
c = 21.9087 (7) ŵ = 3.77 mm1
β = 94.399 (3)°T = 173 K
V = 1262.91 (8) Å3Thick plate, colorless
Z = 40.50 × 0.47 × 0.15 mm
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed X-ray tube2189 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.039
ω scansθmax = 71.4°, θmin = 4.1°
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlisPro; Rigaku OD, 2015)
h = 97
Tmin = 0.290, Tmax = 1.000k = 88
4470 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.37 e Å3
2367 reflectionsΔρmin = 0.33 e Å3
162 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0078 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56603 (7)0.46135 (8)0.25046 (2)0.0268 (2)
S20.78152 (6)0.59368 (8)0.36113 (2)0.0251 (2)
O10.63724 (17)0.6970 (2)0.51244 (6)0.0216 (3)
O20.17729 (18)0.7559 (2)0.40453 (6)0.0264 (4)
N10.4544 (2)0.6643 (2)0.40715 (7)0.0154 (4)
H1N0.539 (3)0.652 (3)0.4280 (12)0.023 (6)*
N20.4351 (2)0.5994 (2)0.34749 (7)0.0176 (4)
C10.4993 (2)0.7762 (3)0.53693 (8)0.0147 (4)
C20.5060 (3)0.8398 (3)0.59679 (8)0.0223 (5)
H2A0.60930.82810.62250.027*
C30.3628 (3)0.9202 (3)0.61912 (9)0.0266 (5)
H3A0.36920.96490.65990.032*
C40.2108 (3)0.9360 (3)0.58261 (10)0.0250 (5)
H4A0.11230.99030.59790.030*
C50.2049 (3)0.8710 (3)0.52332 (9)0.0177 (4)
H5A0.10000.88090.49830.021*
C60.3460 (2)0.7921 (2)0.49882 (8)0.0127 (4)
C70.7980 (3)0.6926 (3)0.54850 (11)0.0292 (5)
H7A0.88590.63750.52470.044*
H7B0.78560.62160.58560.044*
H7C0.83290.81560.55990.044*
C80.3180 (2)0.7356 (3)0.43279 (8)0.0139 (4)
C90.5758 (3)0.5576 (3)0.32388 (8)0.0170 (4)
C100.3382 (3)0.4499 (4)0.23262 (11)0.0396 (6)
H10A0.31410.38490.19400.059*
H10B0.29110.57210.22860.059*
H10C0.28460.38650.26550.059*
C110.9276 (3)0.4888 (3)0.31271 (10)0.0295 (5)
H11A1.04640.51080.32910.044*
H11B0.91040.53930.27140.044*
H11C0.90570.35880.31110.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (3)0.0384 (4)0.0097 (3)0.0020 (2)0.0038 (2)0.01010 (19)
S20.0212 (3)0.0391 (4)0.0151 (3)0.0011 (2)0.0019 (2)0.0105 (2)
O10.0139 (7)0.0363 (8)0.0139 (7)0.0024 (6)0.0031 (5)0.0007 (6)
O20.0198 (7)0.0460 (10)0.0123 (7)0.0050 (7)0.0051 (5)0.0039 (6)
N10.0165 (8)0.0251 (9)0.0042 (7)0.0005 (7)0.0025 (6)0.0027 (6)
N20.0224 (8)0.0240 (9)0.0061 (7)0.0018 (7)0.0007 (6)0.0024 (6)
C10.0175 (9)0.0174 (9)0.0093 (8)0.0038 (7)0.0008 (7)0.0041 (7)
C20.0279 (11)0.0293 (11)0.0087 (9)0.0072 (9)0.0056 (7)0.0024 (8)
C30.0404 (13)0.0306 (11)0.0090 (9)0.0068 (9)0.0024 (8)0.0052 (8)
C40.0316 (12)0.0270 (11)0.0174 (10)0.0010 (9)0.0096 (9)0.0043 (8)
C50.0191 (9)0.0203 (9)0.0138 (9)0.0011 (7)0.0013 (7)0.0004 (7)
C60.0177 (9)0.0139 (8)0.0064 (8)0.0024 (7)0.0006 (6)0.0030 (6)
C70.0166 (10)0.0377 (13)0.0317 (12)0.0021 (9)0.0093 (8)0.0064 (10)
C80.0157 (9)0.0190 (9)0.0068 (8)0.0019 (7)0.0013 (6)0.0027 (7)
C90.0234 (10)0.0193 (9)0.0084 (8)0.0014 (7)0.0013 (7)0.0004 (7)
C100.0357 (14)0.0588 (17)0.0227 (11)0.0033 (12)0.0086 (10)0.0190 (11)
C110.0262 (11)0.0416 (13)0.0210 (11)0.0064 (10)0.0047 (9)0.0059 (10)
Geometric parameters (Å, º) top
S1—C91.7564 (19)C3—H3A0.9500
S1—C101.788 (3)C4—C51.383 (3)
S2—C91.761 (2)C4—H4A0.9500
S2—C111.792 (2)C5—C61.389 (3)
O1—C11.369 (2)C5—H5A0.9500
O1—C71.428 (2)C6—C81.506 (2)
O2—C81.225 (2)C7—H7A0.9800
N1—C81.347 (2)C7—H7B0.9800
N1—N21.391 (2)C7—H7C0.9800
N1—H1N0.78 (3)C10—H10A0.9800
N2—C91.285 (3)C10—H10B0.9800
C1—C21.391 (3)C10—H10C0.9800
C1—C61.408 (2)C11—H11A0.9800
C2—C31.386 (3)C11—H11B0.9800
C2—H2A0.9500C11—H11C0.9800
C3—C41.381 (3)
C9—S1—C10101.07 (10)O1—C7—H7A109.5
C9—S2—C11104.77 (10)O1—C7—H7B109.5
C1—O1—C7118.23 (16)H7A—C7—H7B109.5
C8—N1—N2119.76 (16)O1—C7—H7C109.5
C8—N1—H1N117.2 (19)H7A—C7—H7C109.5
N2—N1—H1N122.7 (19)H7B—C7—H7C109.5
C9—N2—N1115.35 (16)O2—C8—N1122.69 (16)
O1—C1—C2122.80 (17)O2—C8—C6120.62 (16)
O1—C1—C6117.25 (16)N1—C8—C6116.69 (15)
C2—C1—C6119.95 (18)N2—C9—S1119.27 (15)
C3—C2—C1120.40 (18)N2—C9—S2123.33 (14)
C3—C2—H2A119.8S1—C9—S2117.39 (11)
C1—C2—H2A119.8S1—C10—H10A109.5
C4—C3—C2120.53 (18)S1—C10—H10B109.5
C4—C3—H3A119.7H10A—C10—H10B109.5
C2—C3—H3A119.7S1—C10—H10C109.5
C3—C4—C5118.7 (2)H10A—C10—H10C109.5
C3—C4—H4A120.7H10B—C10—H10C109.5
C5—C4—H4A120.7S2—C11—H11A109.5
C4—C5—C6122.66 (19)S2—C11—H11B109.5
C4—C5—H5A118.7H11A—C11—H11B109.5
C6—C5—H5A118.7S2—C11—H11C109.5
C5—C6—C1117.76 (16)H11A—C11—H11C109.5
C5—C6—C8115.35 (16)H11B—C11—H11C109.5
C1—C6—C8126.88 (16)
C8—N1—N2—C9170.57 (17)C2—C1—C6—C8178.17 (18)
C7—O1—C1—C25.0 (3)N2—N1—C8—O24.3 (3)
C7—O1—C1—C6174.99 (17)N2—N1—C8—C6176.21 (15)
O1—C1—C2—C3179.51 (18)C5—C6—C8—O21.7 (3)
C6—C1—C2—C30.5 (3)C1—C6—C8—O2179.63 (19)
C1—C2—C3—C41.0 (3)C5—C6—C8—N1177.76 (17)
C2—C3—C4—C50.4 (3)C1—C6—C8—N10.9 (3)
C3—C4—C5—C60.6 (3)N1—N2—C9—S1176.15 (13)
C4—C5—C6—C11.0 (3)N1—N2—C9—S24.5 (3)
C4—C5—C6—C8177.78 (18)C10—S1—C9—N21.1 (2)
O1—C1—C6—C5179.54 (16)C10—S1—C9—S2179.49 (14)
C2—C1—C6—C50.5 (3)C11—S2—C9—N2173.48 (18)
O1—C1—C6—C81.8 (3)C11—S2—C9—S17.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.78 (3)1.97 (3)2.627 (2)141 (2)
C10—H10A···O2i0.982.373.326 (3)166
C11—H11A···O2ii0.982.613.341 (3)131
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

MKB is thankful to the Science and Engineering Research Board, New Delhi, India for the award of a Young Scientist Project (No. YSS/2015/001201). JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAli, M. A., Mirza, A. H., Hamid, M. H. S. A., Bernhardt, P. V., Atchade, O., Song, X., Eng, G. & May, L. (2008). Polyhedron, 27, 977–984.  Web of Science CSD CrossRef CAS Google Scholar
First citationBharti, N., Maurya, M. R., Naqvi, F., Bhattcharya, A., Bhattacharya, S. & Azam, A. (2000). Eur. J. Med. Chem. 35, 481–486.  Web of Science PubMed Google Scholar
First citationBharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationGobis, K., Foks, H., Zwolska, Z., Augustynowicz-Kopeć, E., Główka, M. L., Olczak, A. & Sabisz, M. (2011). Monatsh. Chem. 142, 1137–1142.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNath, P., Bharty, M. K., Chaurasia, R., Kumari, S. & Gupta, S. K. (2015). Acta Cryst. E71, o967–o968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Bharty, M. K., Kushawaha, S. K., Singh, U. P. & Tyagi, P. (2010). Polyhedron, 29, 1902–1909.  CSD CrossRef CAS Google Scholar
First citationSingh, M., Bharty, M. K., Singh, A., Kashyap, S., Singh, U. P. & Singh, N. K. (2012). Transition Met. Chem. 37, 695–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, N. K., Kushawaha, S. K., Bharty, M. K., Dulare, R. & Butcher, R. J. (2009). J. Mol. Struct. 936, 257–263.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds