metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Potassium tetra­cyanidoaurate(III) monohydrate: a redetermination

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan, and bDepartment of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 March 2017; accepted 9 March 2017; online 14 March 2017)

The structure of the title metal complex salt, K[Au(CN)4]·H2O, has been redetermined using X-ray diffraction data at 173 K in order to improve the precision. The previous determination was based on neutron diffraction data [Bertinotti & Bertinotti (1970). Acta Cryst. B26, 422–428]. The title compound crystallizes in the space group P212121 with one potassium cation, one [Au(CN)4] anion and one water mol­ecule in the asymmetric unit. The AuIII atom lies on a general position and has an almost square-planar coordination sphere defined by four cyanide ligands. Inter­actions between the potassium cation and N atoms of the complex anion, as well as O—H⋯N hydrogen bonds, lead to the formation of a three-dimensional framework structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Potassium tetra­cyanidoaurate(III) monohydrate, K[Au(CN)4]·H2O, is one of the typical starting compounds for preparation of various tetra­cyanidoaurate(III) salts. The crystal structure of K[Au(CN)4]·H2O has already been determined by neutron diffraction (Bertinotti & Bertinotti, 1970[Bertinotti, C. & Bertinotti, A. (1970). Acta Cryst. B26, 422-428.]). However, because of the need for more precise structural data, we have redetermined the crystal structure using X-ray diffraction data at 173 K. The redetermination of the title salt confirms the previous model but shows an improvement with respect to the precision on bond lengths and angles, with respective standard uncertainties decreased to about one half to one third of those of the previous determination by neutron diffraction. In addition, in the current study all atoms were refined with anisotropic displacement parameters and the absolute structure was determined.

The components of the title salt are displayed in Fig. 1[link]. The asymmetric unit comprises one potassium cation, one [Au(CN)4] anion and one water mol­ecule. The AuIII atom of the [Au(CN)4] anion is coordinated by four C atoms of four cyanido ligands in an almost square-planar configuration. The r.m.s. deviation of the least-squares plane formed by atoms Au, C1, C2, C3, C4, N1, N2, N3 and N4 is 0.0265 Å. The Au—C [1.998 (4)–2.007 (4) Å] and C≡N [1.138 (5)–1.146 (5) Å] bond lengths, C—Au—Ctrans [178.63 (18), 179.39 (17)°], C—Au—Ccis [89.22 (16)–90.75 (17)°] and Au—C—N [177.3 (4)–179.7 (4)°] bond angles are consistent with values reported by Geisheimer et al. (2011[Geisheimer, A. R., Wren, J. E. C., Michaelis, V. K., Kobayashi, M., Sakai, K., Kroeker, S. & Leznoff, D. B. (2011). Inorg. Chem. 50, 1265-1274.]) for the [Au(CN)4] anion in related compounds: [N(C4H9)4][Au(CN)4] [Au—C = 1.992 (3)–2.002 (3) Å, C≡N = 1.139 (5)–1.148 (5) Å, C—Au—Ctrans = 178.03 (12), 179.25 (13)°, C—Au—Ccis = 89.44 (13)–90.49 (14)°, Au—C—N = 177.0 (3)–178.4 (3)°]; [As(C6H5)4][Au(CN)4] [Au—C = 1.985 (2)–1.996 (2) Å, C≡N = 1.140 (3)–1.150 (3) Å, C—Au—Ctrans = 179.35 (9), 179.74 (9)°, C—Au—Ccis = 89.41 (10)–90.75 (9)°, Au—C—N = 177.8 (2)–179.7 (3)°]; [N(P(C6H5)3)2][Au(CN)4] [Au—C = 1.987 (6)–1.997 (5) Å, C≡N = 1.118 (5)–1.132 (6) Å, C—Au—Ctrans = 179.10 (19), 179.47 (18)°, C—Au—Ccis = 88.85 (18)–91.00 (19)°, Au—C—N = 177.7 (6)–179.4 (6)°].

[Figure 1]
Figure 1
The asymmetric unit of the title salt, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

In the crystal, the potassium cation exhibits a coordination number of eight and is surrounded by six N atoms of the cyanido ligands [K⋯N = 2.891 (4)–3.431 (4) Å] and two O atoms of water mol­ecules [K⋯O = 2.804 (3), 2.886 (3) Å] (Fig. 2[link]). Two O—H⋯N hydrogen bonds between the water mol­ecule of crystallization and the [Au(CN)4] anion further stabilize the crystal packing of the title salt (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H2⋯N1i 0.84 2.32 3.157 (5) 178
O—H1⋯N2ii 0.84 2.27 2.952 (5) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The environment of the K+ cation, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Orange dashed lines represent short contacts between the potassium ion and surrounding atoms. [Symmetry codes: (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (vii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (viii) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (ix) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (x) x − 1, y, z.]
[Figure 3]
Figure 3
The crystal packing of the title salt, viewed along the b axis. Light-blue dashed lines represent the hydrogen bonds. Orange solid lines indicate the unit cell.

Synthesis and crystallization

To an aqueous solution of H[AuCl4]·4H2O (2.007 g) neutralized by an aqueous solution of KOH was added an aqueous solution of KCN (1.286 g) at room temperature under stirring. The colour of the solution also changed immediately from yellow to colourless just after the addition. Slow evaporation of the solution gave colourless platelet single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final refinements, five reflections, (0 1 23), (0 3 23), (1 0 24), ([\overline{1}] 6 20) and (1 6 20), were omitted due to poor agreements between observed and calculated intensities. The maximum and minimum electron density peaks are located 0.75 and 0.75 Å, respectively, from the Au atom.

Table 2
Experimental details

Crystal data
Chemical formula K[Au(CN)4]·H2O
Mr 358.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 6.6460 (7), 7.0733 (8), 17.4356 (19)
V3) 819.63 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 18.40
Crystal size (mm) 0.30 × 0.30 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging-plate
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.437, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17391, 2828, 2666
Rint 0.045
(sin θ/λ)max−1) 0.745
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.034, 1.03
No. of reflections 2828
No. of parameters 101
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.44, −1.09
Absolute structure Flack x determined using 1076 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.006 (6)
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

Potassium tetracyanidoaurate(III) monohydrate top
Crystal data top
K[Au(CN)4]·H2ODx = 2.902 Mg m3
Mr = 358.16Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121Cell parameters from 8740 reflections
a = 6.6460 (7) Åθ = 3.1–31.9°
b = 7.0733 (8) ŵ = 18.40 mm1
c = 17.4356 (19) ÅT = 173 K
V = 819.63 (15) Å3Platelet, colorless
Z = 40.30 × 0.30 × 0.20 mm
F(000) = 640
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
2828 independent reflections
Radiation source: X-ray sealed tube2666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.00 pixels mm-1θmax = 32.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.437, Tmax = 1.000l = 2523
17391 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0069P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.44 e Å3
2828 reflectionsΔρmin = 1.09 e Å3
101 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0093 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1076 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.006 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.5906 (0.0057) x + 6.3743 (0.0030) y + 3.3049 (0.0146) z = 2.5384 (0.0067)

* 0.0043 (0.0013) Au * -0.0216 (0.0038) C1 * 0.0054 (0.0039) C2 * -0.0097 (0.0037) C3 * 0.0245 (0.0037) C4 * -0.0325 (0.0030) N1 * 0.0402 (0.0031) N2 * -0.0400 (0.0030) N3 * 0.0293 (0.0030) N4

Rms deviation of fitted atoms = 0.0265

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.75839 (2)0.57191 (2)0.26080 (2)0.01211 (5)
C10.6473 (6)0.4715 (7)0.3595 (2)0.0172 (9)
C21.0114 (6)0.6470 (7)0.3147 (2)0.0177 (8)
C30.8687 (6)0.6664 (6)0.1607 (2)0.0163 (8)
C40.5035 (6)0.4994 (6)0.2069 (2)0.0165 (8)
N10.5844 (5)0.4150 (6)0.4160 (2)0.0214 (8)
N21.1526 (6)0.6928 (7)0.3475 (2)0.0255 (9)
N30.9262 (6)0.7151 (6)0.1027 (2)0.0220 (8)
N40.3604 (5)0.4584 (6)0.1752 (2)0.0228 (8)
K0.23731 (16)0.46003 (12)0.51708 (4)0.02024 (17)
O0.6252 (5)0.3372 (5)0.01812 (17)0.0252 (7)
H10.66630.35290.06320.038*
H20.70070.40500.00900.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01349 (7)0.01157 (7)0.01126 (8)0.00070 (7)0.00035 (6)0.00005 (4)
C10.0172 (18)0.018 (2)0.017 (2)0.0028 (16)0.0013 (15)0.0003 (16)
C20.0190 (19)0.015 (2)0.0191 (19)0.0003 (17)0.0032 (16)0.0007 (17)
C30.0159 (18)0.016 (2)0.0173 (19)0.0017 (16)0.0008 (15)0.0012 (16)
C40.0193 (19)0.015 (2)0.0151 (19)0.0006 (16)0.0010 (15)0.0038 (16)
N10.0222 (17)0.025 (2)0.0169 (18)0.0003 (18)0.0017 (13)0.0020 (16)
N20.0248 (19)0.026 (2)0.0257 (19)0.0061 (17)0.0049 (16)0.0004 (18)
N30.0233 (18)0.024 (2)0.0189 (18)0.0015 (17)0.0023 (14)0.0012 (17)
N40.0215 (17)0.024 (2)0.0228 (19)0.0051 (16)0.0039 (14)0.0029 (16)
K0.0197 (4)0.0224 (4)0.0186 (4)0.0006 (5)0.0028 (4)0.0012 (3)
O0.0252 (15)0.031 (2)0.0194 (15)0.0023 (13)0.0014 (12)0.0035 (14)
Geometric parameters (Å, º) top
Au—C21.998 (4)K—Ovi2.804 (3)
Au—C12.002 (4)K—Oiii2.886 (4)
Au—C42.003 (4)K—N4vi2.891 (4)
Au—C32.007 (4)K—N3vii2.923 (4)
C1—N11.143 (5)K—N3viii2.961 (4)
C2—N21.146 (5)K—N1ix3.071 (4)
C3—N31.135 (5)K—N2x3.431 (4)
C4—N41.138 (5)K—Ki4.4972 (12)
N1—K2.920 (4)K—Kix4.4972 (12)
N1—Ki3.071 (4)O—Kv2.804 (3)
N2—Kii3.431 (4)O—Kvii2.886 (3)
N3—Kiii2.923 (4)O—H10.8400
N3—Kiv2.961 (4)O—H20.8400
N4—Kv2.891 (4)
C2—Au—C190.01 (16)N4vi—K—N1ix74.67 (11)
C2—Au—C4179.39 (17)N1—K—N1ix113.35 (8)
C1—Au—C490.03 (17)N3vii—K—N1ix68.68 (11)
C2—Au—C390.75 (17)N3viii—K—N1ix72.36 (10)
C1—Au—C3178.63 (18)Ovi—K—N2x67.62 (9)
C4—Au—C389.22 (16)Oiii—K—N2x54.90 (9)
N1—C1—Au179.7 (4)N4vi—K—N2x133.59 (12)
N2—C2—Au177.7 (4)N1—K—N2x70.24 (10)
N3—C3—Au177.3 (4)N3vii—K—N2x66.90 (11)
N4—C4—Au178.9 (4)N3viii—K—N2x139.40 (10)
C1—N1—K140.5 (3)N1ix—K—N2x133.45 (10)
C1—N1—Ki120.6 (3)Ovi—K—Ki166.83 (8)
K—N1—Ki97.27 (11)Oiii—K—Ki110.40 (7)
C2—N2—Kii115.4 (3)N4vi—K—Ki115.09 (9)
C3—N3—Kiii133.8 (3)N1—K—Ki42.63 (8)
C3—N3—Kiv125.2 (3)N3vii—K—Ki77.79 (8)
Kiii—N3—Kiv99.69 (11)N3viii—K—Ki39.84 (7)
C4—N4—Kv126.9 (3)N1ix—K—Ki73.99 (8)
Ovi—K—Oiii78.50 (5)N2x—K—Ki108.91 (7)
Ovi—K—N4vi72.47 (10)Ovi—K—Kix72.78 (7)
Oiii—K—N4vi95.14 (11)Oiii—K—Kix144.74 (7)
Ovi—K—N1137.61 (11)N4vi—K—Kix95.29 (8)
Oiii—K—N173.89 (11)N1—K—Kix115.57 (9)
N4vi—K—N1140.78 (11)N3vii—K—Kix40.46 (8)
Ovi—K—N3vii89.34 (10)N3viii—K—Kix110.40 (9)
Oiii—K—N3vii120.90 (10)N1ix—K—Kix40.10 (7)
N4vi—K—N3vii135.75 (11)N2x—K—Kix94.69 (7)
N1—K—N3vii78.33 (10)Ki—K—Kix95.28 (3)
Ovi—K—N3viii149.29 (10)Kv—O—Kvii138.03 (13)
Oiii—K—N3viii104.76 (11)Kv—O—H1102.6
N4vi—K—N3viii76.83 (10)Kvii—O—H1102.6
N1—K—N3viii70.24 (11)Kv—O—H2102.6
N3vii—K—N3viii113.15 (8)Kvii—O—H2102.6
Ovi—K—N1ix98.92 (11)H1—O—H2105.0
Oiii—K—N1ix169.76 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y+1, z1/2; (vi) x+1/2, y+1, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x+3/2, y+1, z+1/2; (ix) x1/2, y+1/2, z+1; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H2···N1iv0.842.323.157 (5)178
O—H1···N2xi0.842.272.952 (5)139
Symmetry codes: (iv) x+3/2, y+1, z1/2; (xi) x+2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (award No. S1311027).

References

First citationBertinotti, C. & Bertinotti, A. (1970). Acta Cryst. B26, 422–428.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGeisheimer, A. R., Wren, J. E. C., Michaelis, V. K., Kobayashi, M., Sakai, K., Kroeker, S. & Leznoff, D. B. (2011). Inorg. Chem. 50, 1265–1274.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds