organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[5-(Pyridin-2-yl)-1,3,4-thia­diazol-2-yl]pyridin-1-ium perchlorate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 March 2017; accepted 23 March 2017; online 28 March 2017)

The cation of the title mol­ecular salt, C12H9N4S+·ClO4, is approximately planar, with the pyridine and pyridinium rings being inclined to the central thia­diazole ring by 6.51 (9) and 9.13 (9)°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10)°. In the crystal, the cations are linked by N—H⋯O and C—H⋯O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction. The chains are linked by weak offset ππ inter­actions [inter-centroid distance = 3.586 (1) Å], forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition metal complexes with the ligand 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (L) have attracted considerable attention owing to their magnetic properties (Klingele et al., 2010[Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689-1691.]) and biological activity (Zine et al., 2016[Zine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661-2667.]). Indeed, the ligand (L) can coordinate to different metal ions in many modes (Bentiss et al., 2002[Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403-408.], 2011[Bentiss, F., Mernari, B., Traisnel, M., Vezin, H. & Lagrenée, M. (2011). Corros. Sci. 53, 487-495.]; Ahmed et al., 2015[Ahmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764-772.]; Laachir et al., 2013[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.], 2015a[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24-m25.],b[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452-454.]). However, we observed the formation of the title compound with the same ligand after the addition of perchloric acid, as a result of the proton donor-acceptor reaction between perchloric acid and 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (L). In this case, no metallic salt was used.

The structure of the title mol­ecular salt is shown in Fig. 1[link]. The cation is almost planar with the pyridine (N1/C1–C5) and pyridinium (N4/C8–C12) rings being inclined to the central thia­diazole (S1/N2/N3/C6/C7) ring by 6.51 (9) and 9.13 (9)°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the cations are linked by N—H⋯O and C—H⋯O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction; Table 1[link] and Fig. 2[link]. The chains are linked by weak offset ππ inter­actions [Cg2⋯Cg1i = 3.586 (1) Å; Cg2 and Cg1 are the centroids of the N1/C1–C5 and S1/N2/N3/C6/C7 rings, respectively; inter­planar distance 3.4952 (8) Å; slippage 0.734 Å; α = 6.51 (9)°; symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1], forming layers parallel to the ab plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.86 2.01 2.820 (2) 157
C11—H11⋯O2i 0.93 2.49 3.228 (3) 136
C12—H12⋯O3i 0.93 2.58 3.268 (3) 131
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title mol­ecular salt. The hydrogen bonds shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

The 2,5-bis(pyridin-2-yl)-1,3,4-thia­diazole ligand (L) was synthesized as described previously (Lebrini et al., 2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]). To a solution of L (24 mg, 0.1 mmol) in EtOH (10 ml) was added dropwise HClO4 (1 ml, 1 mol/l) with stirring at 318 K. The resulting solution was filtered after 2 h and allowed to stand in air for the solvent to evaporate slowly. After one month, colourless block-like crystals of the title compound were isolated and dried under vacuum (yield 40%, m.p. > 543 K). Elemental Analysis for C12H9N4SClO4. Calculated: C 42.30; H 2.66; N 16.44; S 9.41%, found: C 42.86; H 2.70; N 16.54; S 9.87%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H9N4S+·ClO4
Mr 340.74
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 33.5367 (15), 5.5506 (2), 14.7248 (7)
β (°) 96.873 (2)
V3) 2721.3 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.31 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.672, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 50011, 3824, 2916
Rint 0.052
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.03
No. of reflections 3824
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

2-[5-(Pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridin-1-ium perchlorate top
Crystal data top
C12H9N4S+·ClO4F(000) = 1392
Mr = 340.74Dx = 1.663 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.5367 (15) ÅCell parameters from 3824 reflections
b = 5.5506 (2) Åθ = 2.5–29.6°
c = 14.7248 (7) ŵ = 0.46 mm1
β = 96.873 (2)°T = 296 K
V = 2721.3 (2) Å3Block, colourless
Z = 80.31 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube2916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 29.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 4646
Tmin = 0.672, Tmax = 0.747k = 77
50011 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0492P)2 + 3.1258P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3824 reflectionsΔρmax = 0.64 e Å3
200 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: (SHELXL2014; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00101 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18047 (6)0.1642 (4)0.65832 (15)0.0455 (5)
H10.16810.03410.68330.055*
C20.15657 (6)0.3515 (4)0.62216 (14)0.0465 (5)
H20.12880.34580.62210.056*
C30.17455 (7)0.5475 (4)0.58611 (14)0.0472 (5)
H30.15920.67640.56150.057*
C40.21568 (7)0.5486 (4)0.58731 (14)0.0439 (4)
H40.22870.67930.56460.053*
C50.23703 (6)0.3505 (3)0.62305 (12)0.0360 (4)
C60.28059 (6)0.3308 (3)0.62037 (12)0.0356 (4)
N20.30220 (5)0.4922 (3)0.58383 (13)0.0462 (4)
C70.34788 (6)0.2110 (3)0.62361 (12)0.0355 (4)
C80.38781 (6)0.1017 (3)0.62886 (12)0.0352 (4)
C90.40005 (6)0.1039 (4)0.67636 (13)0.0404 (4)
H90.38200.19050.70690.048*
C100.43937 (6)0.1812 (4)0.67844 (15)0.0466 (5)
H100.44790.31920.71100.056*
C110.46602 (6)0.0542 (4)0.63233 (15)0.0506 (5)
H110.49260.10410.63400.061*
C120.45270 (6)0.1464 (4)0.58412 (15)0.0490 (5)
H120.47010.23270.55180.059*
N10.22023 (5)0.1595 (3)0.65940 (12)0.0407 (4)
N30.34134 (5)0.4227 (3)0.58616 (12)0.0451 (4)
N40.41472 (5)0.2185 (3)0.58340 (11)0.0409 (4)
H4A0.40700.34520.55260.049*
O10.41023 (6)0.6149 (4)0.46276 (12)0.0709 (5)
O20.44211 (5)0.9097 (3)0.38647 (13)0.0636 (5)
O30.46696 (6)0.5156 (4)0.39250 (18)0.0877 (7)
O40.40605 (5)0.6036 (3)0.30479 (11)0.0633 (5)
S10.30657 (2)0.07805 (9)0.66034 (3)0.03868 (13)
Cl10.43216 (2)0.66014 (8)0.38557 (3)0.03972 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (11)0.0442 (11)0.0460 (11)0.0084 (9)0.0084 (9)0.0049 (9)
C20.0417 (10)0.0575 (13)0.0394 (10)0.0001 (9)0.0012 (8)0.0126 (9)
C30.0527 (12)0.0468 (12)0.0404 (10)0.0111 (10)0.0015 (9)0.0039 (9)
C40.0538 (12)0.0384 (10)0.0396 (10)0.0011 (9)0.0063 (9)0.0025 (8)
C50.0436 (10)0.0338 (9)0.0304 (8)0.0010 (7)0.0034 (7)0.0025 (7)
C60.0446 (10)0.0312 (8)0.0310 (8)0.0020 (7)0.0044 (7)0.0000 (7)
N20.0510 (10)0.0359 (8)0.0534 (10)0.0008 (7)0.0132 (8)0.0067 (8)
C70.0413 (9)0.0356 (9)0.0300 (8)0.0057 (7)0.0063 (7)0.0015 (7)
C80.0388 (9)0.0390 (9)0.0277 (8)0.0070 (8)0.0041 (7)0.0033 (7)
C90.0453 (10)0.0409 (10)0.0363 (9)0.0046 (8)0.0102 (8)0.0025 (8)
C100.0467 (11)0.0483 (11)0.0443 (11)0.0022 (9)0.0034 (9)0.0049 (9)
C110.0377 (10)0.0630 (14)0.0506 (12)0.0026 (10)0.0036 (9)0.0001 (10)
C120.0400 (10)0.0590 (13)0.0487 (11)0.0120 (9)0.0088 (9)0.0047 (10)
N10.0440 (9)0.0354 (8)0.0432 (9)0.0012 (7)0.0068 (7)0.0003 (7)
N30.0494 (10)0.0372 (8)0.0504 (10)0.0038 (7)0.0136 (8)0.0049 (7)
N40.0420 (9)0.0442 (9)0.0368 (8)0.0073 (7)0.0059 (7)0.0052 (7)
O10.0841 (13)0.0781 (12)0.0533 (10)0.0105 (10)0.0194 (9)0.0201 (9)
O20.0704 (11)0.0440 (9)0.0776 (12)0.0167 (8)0.0134 (9)0.0017 (8)
O30.0481 (10)0.0771 (13)0.135 (2)0.0194 (10)0.0025 (11)0.0011 (13)
O40.0663 (11)0.0715 (11)0.0486 (9)0.0082 (9)0.0074 (8)0.0029 (8)
S10.0399 (3)0.0360 (2)0.0406 (3)0.00179 (19)0.00645 (19)0.00837 (19)
Cl10.0366 (2)0.0386 (2)0.0434 (3)0.00349 (18)0.00246 (18)0.00549 (18)
Geometric parameters (Å, º) top
C1—N11.332 (3)C7—S11.7135 (18)
C1—C21.380 (3)C8—N41.352 (2)
C1—H10.9300C8—C91.375 (3)
C2—C31.380 (3)C9—C101.384 (3)
C2—H20.9300C9—H90.9300
C3—C41.377 (3)C10—C111.379 (3)
C3—H30.9300C10—H100.9300
C4—C51.382 (3)C11—C121.366 (3)
C4—H40.9300C11—H110.9300
C5—N11.341 (2)C12—N41.334 (3)
C5—C61.470 (3)C12—H120.9300
C6—N21.308 (2)N4—H4A0.8600
C6—S11.7178 (19)O1—Cl11.4478 (17)
N2—N31.365 (2)O2—Cl11.4244 (17)
C7—N31.306 (3)O3—Cl11.4099 (19)
C7—C81.464 (3)O4—Cl11.4250 (17)
N1—C1—C2123.6 (2)C8—C9—C10119.62 (18)
N1—C1—H1118.2C8—C9—H9120.2
C2—C1—H1118.2C10—C9—H9120.2
C1—C2—C3118.8 (2)C11—C10—C9120.2 (2)
C1—C2—H2120.6C11—C10—H10119.9
C3—C2—H2120.6C9—C10—H10119.9
C4—C3—C2118.8 (2)C12—C11—C10118.8 (2)
C4—C3—H3120.6C12—C11—H11120.6
C2—C3—H3120.6C10—C11—H11120.6
C3—C4—C5118.3 (2)N4—C12—C11120.09 (19)
C3—C4—H4120.9N4—C12—H12120.0
C5—C4—H4120.9C11—C12—H12120.0
N1—C5—C4123.89 (19)C1—N1—C5116.58 (18)
N1—C5—C6114.72 (17)C7—N3—N2112.18 (16)
C4—C5—C6121.35 (18)C12—N4—C8123.04 (18)
N2—C6—C5124.15 (18)C12—N4—H4A118.5
N2—C6—S1114.66 (15)C8—N4—H4A118.5
C5—C6—S1121.08 (14)C7—S1—C686.35 (9)
C6—N2—N3112.00 (17)O3—Cl1—O2111.20 (13)
N3—C7—C8120.12 (17)O3—Cl1—O4110.83 (13)
N3—C7—S1114.81 (15)O2—Cl1—O4109.99 (11)
C8—C7—S1125.04 (14)O3—Cl1—O1109.78 (14)
N4—C8—C9118.27 (18)O2—Cl1—O1107.57 (12)
N4—C8—C7115.83 (17)O4—Cl1—O1107.34 (11)
C9—C8—C7125.90 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.862.012.820 (2)157
C11—H11···O2i0.932.493.228 (3)136
C12—H12···O3i0.932.583.268 (3)131
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: Chouaib Doukkali University, El Jadida, Morocco (award No. CUR CA2D–UCD).

References

First citationAhmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764–772.  Web of Science CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentiss, F., Mernari, B., Traisnel, M., Vezin, H. & Lagrenée, M. (2011). Corros. Sci. 53, 487–495.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352.  CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24–m25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452–454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661–2667.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds