organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1,1′-(Diazene-1,2-di­yl)bis­­(cyclo­hexane-1-carbo­nitrile)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
*Correspondence e-mail: bakerrj@tcd.ie

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 March 2017; accepted 7 March 2017; online 10 March 2017)

The whole mol­ecule of the title compound, C14H20N4, is generated by inversion symmetry. The mid-point of the N=N bond is situated on the inversion centre. The conformation about this central N=N bond is E. The carbo­nitrile groups occupy axial positions on the cyclo­hexane rings. In the crystal, there are no significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, known as VAZO-88, is a well known radical initiator that has also been used as a ligand in coordination chemistry (Chainok et al., 2010[Chainok, K., Neville, S. M., Moubaraki, B., Batten, S. R., Murray, K. S., Forsyth, C. M. & Cashion, J. D. (2010). Dalton Trans. 39, 10900-10909.]).

The whole mol­ecule of the title compound, illustrated in Fig. 1[link], is generated by inversion symmetry. The mid-point of the N=N bond is situated on the inversion centre. The conformation about the central N1=N1′ bond, of 1.231 (2) Å, is E. The carbo­nitrile groups occupy axial positions on the cyclo­hexane rings and the C2—C3≡N4 bond angle is 176.58 (18) °, with bond length C3≡N4 being 1.147 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (−x + 1, −y + 1, −z + 1).

In the crystal, mol­ecules stack along the a-axis direction (Fig. 2[link]), but there are no significant inter­molecular inter­actions present.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound.

Synthesis and crystallization

During an attempted radical cyclization reaction, using commercially available VAZO-88, we obtained a few colourless crystals of the title compound, on slow evaporation of a hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C14H20N4
Mr 244.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.8740 (19), 21.077 (7), 5.974 (2)
β (°) 110.372 (13)
V3) 693.4 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.57
Crystal size (mm) 0.16 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.666, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 7548, 1299, 1213
Rint 0.033
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.06
No. of reflections 1299
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-1,1'-(Diazene-1,2-diyl)bis(cyclohexane-1-carbonitrile) top
Crystal data top
C14H20N4F(000) = 264
Mr = 244.34Dx = 1.170 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.8740 (19) ÅCell parameters from 4485 reflections
b = 21.077 (7) Åθ = 4.2–69.5°
c = 5.974 (2) ŵ = 0.57 mm1
β = 110.372 (13)°T = 100 K
V = 693.4 (4) Å3Block, colourless
Z = 20.16 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1299 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs1213 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.033
Detector resolution: 7.9 pixels mm-1θmax = 69.7°, θmin = 8.2°
ω and φ scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2525
Tmin = 0.666, Tmax = 0.753l = 77
7548 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0875P)2 + 0.4078P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1299 reflectionsΔρmax = 0.47 e Å3
82 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.5458 (3)0.42030 (8)0.4069 (3)0.0259 (4)
C30.7721 (3)0.40938 (8)0.6143 (3)0.0286 (4)
C50.3418 (3)0.37594 (8)0.4188 (3)0.0295 (4)
H5A0.32010.38140.57480.035*
H5B0.18760.38780.29200.035*
C60.3981 (3)0.30654 (8)0.3880 (3)0.0309 (5)
H6A0.54040.29300.52610.037*
H6B0.25800.28000.38460.037*
C70.4513 (3)0.29635 (8)0.1585 (3)0.0320 (5)
H7A0.30270.30490.01940.038*
H7B0.49820.25160.14930.038*
C80.6554 (3)0.33973 (8)0.1480 (3)0.0306 (5)
H8A0.80830.32810.27720.037*
H8B0.67970.33370.00650.037*
C90.5977 (3)0.40919 (8)0.1749 (3)0.0280 (4)
H9A0.45440.42210.03680.034*
H9B0.73680.43580.17570.034*
N10.4544 (3)0.48574 (7)0.4049 (3)0.0285 (4)
N40.9502 (3)0.39882 (8)0.7674 (3)0.0382 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0226 (8)0.0294 (9)0.0254 (8)0.0012 (6)0.0079 (7)0.0005 (6)
C30.0255 (9)0.0331 (9)0.0291 (9)0.0010 (7)0.0118 (8)0.0008 (7)
C50.0215 (8)0.0357 (10)0.0333 (9)0.0010 (7)0.0120 (7)0.0009 (7)
C60.0252 (9)0.0316 (10)0.0364 (10)0.0015 (7)0.0114 (7)0.0020 (7)
C70.0306 (9)0.0295 (9)0.0341 (9)0.0002 (7)0.0089 (7)0.0023 (7)
C80.0307 (9)0.0336 (10)0.0298 (9)0.0015 (7)0.0133 (7)0.0010 (7)
C90.0247 (9)0.0347 (10)0.0255 (9)0.0012 (6)0.0099 (7)0.0005 (7)
N10.0247 (8)0.0320 (8)0.0301 (7)0.0008 (5)0.0111 (6)0.0023 (5)
N40.0284 (9)0.0505 (10)0.0323 (8)0.0056 (7)0.0063 (7)0.0012 (7)
Geometric parameters (Å, º) top
C2—C31.486 (2)C6—C71.524 (3)
C2—C51.541 (2)C7—H7A0.9900
C2—C91.537 (2)C7—H7B0.9900
C2—N11.479 (2)C7—C81.526 (2)
C3—N41.147 (2)C8—H8A0.9900
C5—H5A0.9900C8—H8B0.9900
C5—H5B0.9900C8—C91.524 (2)
C5—C61.525 (2)C9—H9A0.9900
C6—H6A0.9900C9—H9B0.9900
C6—H6B0.9900N1—N1i1.231 (3)
C3—C2—C5110.60 (14)C6—C7—H7A109.4
C3—C2—C9109.11 (14)C6—C7—H7B109.4
C9—C2—C5110.54 (14)C6—C7—C8111.24 (14)
N1—C2—C3111.60 (13)H7A—C7—H7B108.0
N1—C2—C5106.26 (13)C8—C7—H7A109.4
N1—C2—C9108.69 (13)C8—C7—H7B109.4
N4—C3—C2176.58 (18)C7—C8—H8A109.3
C2—C5—H5A109.3C7—C8—H8B109.3
C2—C5—H5B109.3H8A—C8—H8B108.0
H5A—C5—H5B107.9C9—C8—C7111.40 (14)
C6—C5—C2111.80 (14)C9—C8—H8A109.3
C6—C5—H5A109.3C9—C8—H8B109.3
C6—C5—H5B109.3C2—C9—H9A109.4
C5—C6—H6A109.3C2—C9—H9B109.4
C5—C6—H6B109.3C8—C9—C2111.26 (14)
H6A—C6—H6B108.0C8—C9—H9A109.4
C7—C6—C5111.41 (14)C8—C9—H9B109.4
C7—C6—H6A109.3H9A—C9—H9B108.0
C7—C6—H6B109.3N1i—N1—C2114.07 (18)
C2—C5—C6—C754.82 (19)C6—C7—C8—C956.00 (19)
C3—C2—C5—C666.44 (18)C7—C8—C9—C256.17 (19)
C3—C2—C9—C866.81 (18)C9—C2—C5—C654.51 (19)
C3—C2—N1—N1i15.1 (2)C9—C2—N1—N1i135.45 (18)
C5—C2—C9—C855.02 (19)N1—C2—C5—C6172.27 (13)
C5—C2—N1—N1i105.57 (19)N1—C2—C9—C8171.28 (13)
C5—C6—C7—C855.17 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Higher Education Commission, Pakistan.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainok, K., Neville, S. M., Moubaraki, B., Batten, S. R., Murray, K. S., Forsyth, C. M. & Cashion, J. D. (2010). Dalton Trans. 39, 10900–10909.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds