organic compounds
5,6-Dibromo-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C8H3Br2NO2, crystallizes with two near planar molecules in the with non-H atoms possessing mean deviations from planarity of 0.012 and 0.014 Å. The two molecules are connected by an N—H⋯O and a C—H⋯O hydrogen bond. In the crystal, molecules connect through a series of bifurcated N—(H,H)⋯O hydrogen bonds, forming chains propagating along the [1-1-1] direction. The molecules are further linked through intermolecular halogen interactions, including a Br⋯O close contact of 2.9409 (3) Å, and two C—H⋯Br interactions of 3.777 (3) and 3.845 (3) Å. These interactions link the chains into sheets lying parallel to the (1-23) plane.
Keywords: crystal structure; isatins; hydrogen bonding; halogen–oxygen interactions.
CCDC reference: 1536015
Structure description
In our continued efforts to study the interactions of halogenated isatins in the solid state, we report herein on the ). There are two molecules in the both are nearly planar, with the non-hydrogen atoms possessing mean deviations from planarity of 0.012 and 0.014 Å. The two molecules are connected by an N—H⋯O and a C—H⋯O hydrogen bond (Table 1). The geometrical parameters of the isatin molecules are similar to those observed in the parent compound (Goldschmidt & Llewellyn, 1950). Of note in the structure are Br2⋯O2 close contacts of 2.9409 (3) Å, with the bromine substituted at the 6 position of the isatin ring. In previous reports, 6-bromoisatin (Turbitt et al., 2016) was found to have a similar interaction, which was also observed in 4-bromoisatin (Huang et al., 2016) and 7-bromoisatin (Golen & Manke, 2016a). Interestingly, Br1, which is at the 5-position of the isatin is not involved in a Br⋯O interaction. This was also not present in the solid state structure of 5-bromoisatin (Gurung et al., 2016). For comparison, I⋯O close contacts were observed for both 5-iodoisatin (Garden et al., 2006) and 6-iodoisatin (Golen & Manke, 2016b).
of the title compound, 5,6-dibromoisatin (Fig. 1In the crystal, molecules combine through bifurcated N—(H,H)⋯O hydrogen bonds (Table 1), resulting in infinite chains along [1]. The molecules are further linked through a C—H⋯O hydrogen bond, two C—H⋯Br interactions and the aforementioned Br⋯O interaction, to yield infinite sheets lying parallel to (13); see Table 1 and Fig. 2.
Synthesis and crystallization
A commercial sample (AK Scientific) of 5,6-dibromo-1H-indole-2,3-dione was used for crystallization. Orange block-like crystals were grown by slow evaporation of a solution in tetrahydrofuran.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1536015
https://doi.org/10.1107/S2414314617003558/su4137sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617003558/su4137Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617003558/su4137Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C8H3Br2NO2 | Z = 4 |
Mr = 304.93 | F(000) = 576 |
Triclinic, P1 | Dx = 2.391 Mg m−3 |
a = 7.1044 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5317 (15) Å | Cell parameters from 9890 reflections |
c = 12.2598 (17) Å | θ = 3.2–25.4° |
α = 108.078 (4)° | µ = 9.53 mm−1 |
β = 93.481 (5)° | T = 200 K |
γ = 101.484 (4)° | Block, orange |
V = 847.1 (2) Å3 | 0.18 × 0.07 × 0.05 mm |
Bruker D8 Venture CMOS diffractometer | 2728 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.037 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.4°, θmin = 3.0° |
Tmin = 0.147, Tmax = 0.259 | h = −8→8 |
23591 measured reflections | k = −12→12 |
3116 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: mixed |
wR(F2) = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.020P)2 + 0.9509P] where P = (Fo2 + 2Fc2)/3 |
3116 reflections | (Δ/σ)max = 0.001 |
241 parameters | Δρmax = 0.38 e Å−3 |
2 restraints | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1A | 0.47270 (4) | −0.30752 (3) | 0.14714 (2) | 0.02479 (8) | |
Br2A | 0.22006 (4) | −0.12973 (3) | 0.33501 (2) | 0.02340 (8) | |
O1A | 1.1378 (3) | 0.4127 (2) | 0.42202 (19) | 0.0299 (5) | |
O2A | 1.1634 (3) | 0.1601 (2) | 0.24850 (18) | 0.0280 (5) | |
N1A | 0.8347 (3) | 0.2843 (2) | 0.4282 (2) | 0.0203 (5) | |
H1A | 0.790 (4) | 0.344 (3) | 0.478 (2) | 0.024* | |
C1A | 1.0112 (4) | 0.3079 (3) | 0.3919 (2) | 0.0207 (6) | |
C2A | 1.0237 (4) | 0.1715 (3) | 0.2994 (2) | 0.0191 (6) | |
C3A | 0.8391 (4) | 0.0758 (3) | 0.2929 (2) | 0.0181 (6) | |
C4A | 0.7644 (4) | −0.0600 (3) | 0.2257 (2) | 0.0198 (6) | |
H4A | 0.8380 | −0.1092 | 0.1729 | 0.024* | |
C5A | 0.5791 (4) | −0.1220 (3) | 0.2376 (2) | 0.0201 (6) | |
C6A | 0.4717 (4) | −0.0480 (3) | 0.3155 (2) | 0.0187 (6) | |
C7A | 0.5464 (4) | 0.0886 (3) | 0.3829 (2) | 0.0196 (6) | |
H7A | 0.4728 | 0.1384 | 0.4354 | 0.023* | |
C8A | 0.7306 (4) | 0.1485 (3) | 0.3706 (2) | 0.0176 (6) | |
Br1 | −0.16323 (4) | 0.65214 (3) | 0.96887 (3) | 0.03334 (9) | |
Br2 | 0.21559 (4) | 0.91557 (3) | 1.01670 (3) | 0.02740 (8) | |
O1 | 0.5314 (3) | 0.3653 (2) | 0.55313 (19) | 0.0328 (5) | |
O2 | 0.1546 (3) | 0.2594 (2) | 0.61325 (18) | 0.0280 (5) | |
N1 | 0.5037 (3) | 0.5666 (2) | 0.6916 (2) | 0.0225 (5) | |
H1 | 0.609 (3) | 0.621 (3) | 0.690 (3) | 0.027* | |
C1 | 0.4470 (4) | 0.4324 (3) | 0.6242 (2) | 0.0219 (6) | |
C2 | 0.2460 (4) | 0.3766 (3) | 0.6564 (2) | 0.0205 (6) | |
C3 | 0.2055 (4) | 0.4942 (3) | 0.7454 (2) | 0.0197 (6) | |
C4 | 0.0484 (4) | 0.5079 (3) | 0.8054 (2) | 0.0218 (6) | |
H4 | −0.0593 | 0.4326 | 0.7917 | 0.026* | |
C5 | 0.0522 (4) | 0.6344 (3) | 0.8861 (2) | 0.0225 (6) | |
C6 | 0.2115 (4) | 0.7443 (3) | 0.9055 (2) | 0.0205 (6) | |
C7 | 0.3705 (4) | 0.7315 (3) | 0.8445 (2) | 0.0209 (6) | |
H7 | 0.4782 | 0.8066 | 0.8576 | 0.025* | |
C8 | 0.3639 (4) | 0.6048 (3) | 0.7644 (2) | 0.0184 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1A | 0.02325 (15) | 0.01670 (14) | 0.02779 (16) | 0.00039 (11) | 0.00439 (11) | 0.00042 (12) |
Br2A | 0.01509 (14) | 0.02296 (15) | 0.02782 (16) | −0.00174 (11) | 0.00595 (11) | 0.00550 (12) |
O1A | 0.0210 (10) | 0.0198 (11) | 0.0399 (13) | −0.0048 (9) | 0.0090 (9) | 0.0023 (10) |
O2A | 0.0210 (10) | 0.0254 (11) | 0.0353 (12) | 0.0038 (8) | 0.0126 (9) | 0.0060 (9) |
N1A | 0.0179 (11) | 0.0143 (11) | 0.0233 (12) | 0.0014 (9) | 0.0079 (9) | −0.0007 (10) |
C1A | 0.0167 (13) | 0.0196 (14) | 0.0247 (15) | 0.0027 (11) | 0.0032 (11) | 0.0065 (12) |
C2A | 0.0164 (13) | 0.0180 (14) | 0.0235 (14) | 0.0041 (11) | 0.0050 (11) | 0.0074 (12) |
C3A | 0.0158 (13) | 0.0171 (13) | 0.0215 (14) | 0.0040 (10) | 0.0048 (11) | 0.0060 (11) |
C4A | 0.0186 (13) | 0.0195 (14) | 0.0203 (14) | 0.0049 (11) | 0.0063 (11) | 0.0041 (12) |
C5A | 0.0214 (14) | 0.0161 (13) | 0.0203 (14) | 0.0021 (11) | 0.0017 (11) | 0.0040 (11) |
C6A | 0.0129 (13) | 0.0216 (14) | 0.0209 (14) | 0.0010 (10) | 0.0027 (10) | 0.0080 (12) |
C7A | 0.0176 (13) | 0.0201 (14) | 0.0199 (14) | 0.0048 (11) | 0.0057 (11) | 0.0042 (12) |
C8A | 0.0165 (13) | 0.0161 (13) | 0.0178 (13) | 0.0010 (10) | 0.0010 (10) | 0.0043 (11) |
Br1 | 0.02592 (16) | 0.02957 (17) | 0.03630 (18) | 0.00441 (12) | 0.01712 (13) | −0.00192 (14) |
Br2 | 0.02990 (16) | 0.01911 (15) | 0.02697 (16) | 0.00648 (12) | 0.00552 (12) | −0.00201 (12) |
O1 | 0.0263 (11) | 0.0239 (11) | 0.0409 (13) | 0.0033 (9) | 0.0188 (10) | −0.0007 (10) |
O2 | 0.0247 (11) | 0.0195 (11) | 0.0319 (12) | −0.0005 (8) | 0.0086 (9) | −0.0001 (9) |
N1 | 0.0173 (12) | 0.0180 (12) | 0.0272 (13) | 0.0000 (9) | 0.0101 (10) | 0.0015 (10) |
C1 | 0.0186 (14) | 0.0200 (14) | 0.0249 (15) | 0.0029 (11) | 0.0081 (12) | 0.0042 (12) |
C2 | 0.0177 (13) | 0.0213 (15) | 0.0212 (14) | 0.0032 (11) | 0.0044 (11) | 0.0055 (12) |
C3 | 0.0195 (14) | 0.0169 (14) | 0.0210 (14) | 0.0031 (11) | 0.0049 (11) | 0.0041 (12) |
C4 | 0.0182 (14) | 0.0212 (14) | 0.0235 (15) | 0.0009 (11) | 0.0044 (11) | 0.0059 (12) |
C5 | 0.0182 (14) | 0.0260 (15) | 0.0226 (14) | 0.0078 (11) | 0.0072 (11) | 0.0046 (12) |
C6 | 0.0243 (14) | 0.0181 (13) | 0.0173 (13) | 0.0070 (11) | 0.0009 (11) | 0.0024 (11) |
C7 | 0.0198 (14) | 0.0176 (14) | 0.0233 (14) | 0.0009 (11) | 0.0026 (11) | 0.0061 (12) |
C8 | 0.0160 (13) | 0.0204 (14) | 0.0185 (14) | 0.0034 (11) | 0.0046 (11) | 0.0061 (12) |
Br1A—C5A | 1.893 (3) | Br1—C5 | 1.895 (3) |
Br2A—C6A | 1.887 (3) | Br2—C6 | 1.887 (3) |
O1A—C1A | 1.214 (3) | O1—C1 | 1.212 (3) |
O2A—C2A | 1.210 (3) | O2—C2 | 1.208 (3) |
N1A—H1A | 0.855 (17) | N1—H1 | 0.858 (18) |
N1A—C1A | 1.358 (3) | N1—C1 | 1.360 (4) |
N1A—C8A | 1.407 (3) | N1—C8 | 1.411 (3) |
C1A—C2A | 1.553 (4) | C1—C2 | 1.555 (4) |
C2A—C3A | 1.467 (4) | C2—C3 | 1.465 (4) |
C3A—C4A | 1.385 (4) | C3—C4 | 1.380 (4) |
C3A—C8A | 1.400 (4) | C3—C8 | 1.398 (4) |
C4A—H4A | 0.9500 | C4—H4 | 0.9500 |
C4A—C5A | 1.386 (4) | C4—C5 | 1.386 (4) |
C5A—C6A | 1.402 (4) | C5—C6 | 1.397 (4) |
C6A—C7A | 1.392 (4) | C6—C7 | 1.398 (4) |
C7A—H7A | 0.9500 | C7—H7 | 0.9500 |
C7A—C8A | 1.374 (4) | C7—C8 | 1.379 (4) |
C1A—N1A—H1A | 125 (2) | C1—N1—H1 | 125 (2) |
C1A—N1A—C8A | 111.0 (2) | C1—N1—C8 | 111.0 (2) |
C8A—N1A—H1A | 124 (2) | C8—N1—H1 | 124 (2) |
O1A—C1A—N1A | 129.0 (3) | O1—C1—N1 | 128.9 (3) |
O1A—C1A—C2A | 124.7 (2) | O1—C1—C2 | 124.9 (2) |
N1A—C1A—C2A | 106.3 (2) | N1—C1—C2 | 106.2 (2) |
O2A—C2A—C1A | 122.3 (2) | O2—C2—C1 | 123.6 (2) |
O2A—C2A—C3A | 132.8 (3) | O2—C2—C3 | 131.6 (3) |
C3A—C2A—C1A | 104.9 (2) | C3—C2—C1 | 104.8 (2) |
C4A—C3A—C2A | 132.1 (2) | C4—C3—C2 | 131.5 (3) |
C4A—C3A—C8A | 121.0 (2) | C4—C3—C8 | 121.2 (2) |
C8A—C3A—C2A | 106.9 (2) | C8—C3—C2 | 107.3 (2) |
C3A—C4A—H4A | 120.9 | C3—C4—H4 | 120.9 |
C3A—C4A—C5A | 118.1 (2) | C3—C4—C5 | 118.1 (3) |
C5A—C4A—H4A | 120.9 | C5—C4—H4 | 120.9 |
C4A—C5A—Br1A | 119.2 (2) | C4—C5—Br1 | 117.9 (2) |
C4A—C5A—C6A | 120.3 (2) | C4—C5—C6 | 120.4 (3) |
C6A—C5A—Br1A | 120.5 (2) | C6—C5—Br1 | 121.7 (2) |
C5A—C6A—Br2A | 121.4 (2) | C5—C6—Br2 | 119.9 (2) |
C7A—C6A—Br2A | 116.9 (2) | C5—C6—C7 | 121.8 (2) |
C7A—C6A—C5A | 121.6 (2) | C7—C6—Br2 | 118.3 (2) |
C6A—C7A—H7A | 121.3 | C6—C7—H7 | 121.5 |
C8A—C7A—C6A | 117.4 (2) | C8—C7—C6 | 117.0 (2) |
C8A—C7A—H7A | 121.3 | C8—C7—H7 | 121.5 |
C3A—C8A—N1A | 110.9 (2) | C3—C8—N1 | 110.7 (2) |
C7A—C8A—N1A | 127.6 (2) | C7—C8—N1 | 127.8 (2) |
C7A—C8A—C3A | 121.5 (2) | C7—C8—C3 | 121.5 (2) |
Br1A—C5A—C6A—Br2A | 0.9 (3) | Br1—C5—C6—Br2 | 0.1 (4) |
Br1A—C5A—C6A—C7A | −179.9 (2) | Br1—C5—C6—C7 | −180.0 (2) |
Br2A—C6A—C7A—C8A | 179.1 (2) | Br2—C6—C7—C8 | 179.6 (2) |
O1A—C1A—C2A—O2A | −0.8 (5) | O1—C1—C2—O2 | 0.3 (5) |
O1A—C1A—C2A—C3A | 179.9 (3) | O1—C1—C2—C3 | 179.8 (3) |
O2A—C2A—C3A—C4A | 0.0 (6) | O2—C2—C3—C4 | −1.7 (6) |
O2A—C2A—C3A—C8A | −178.1 (3) | O2—C2—C3—C8 | 178.7 (3) |
N1A—C1A—C2A—O2A | 178.5 (3) | N1—C1—C2—O2 | −179.1 (3) |
N1A—C1A—C2A—C3A | −0.8 (3) | N1—C1—C2—C3 | 0.3 (3) |
C1A—N1A—C8A—C3A | 0.5 (3) | C1—N1—C8—C3 | −0.7 (3) |
C1A—N1A—C8A—C7A | −178.6 (3) | C1—N1—C8—C7 | 179.8 (3) |
C1A—C2A—C3A—C4A | 179.2 (3) | C1—C2—C3—C4 | 179.0 (3) |
C1A—C2A—C3A—C8A | 1.0 (3) | C1—C2—C3—C8 | −0.7 (3) |
C2A—C3A—C4A—C5A | −178.0 (3) | C2—C3—C4—C5 | 179.8 (3) |
C2A—C3A—C8A—N1A | −1.0 (3) | C2—C3—C8—N1 | 0.9 (3) |
C2A—C3A—C8A—C7A | 178.1 (3) | C2—C3—C8—C7 | −179.6 (3) |
C3A—C4A—C5A—Br1A | −180.0 (2) | C3—C4—C5—Br1 | −179.6 (2) |
C3A—C4A—C5A—C6A | 0.3 (4) | C3—C4—C5—C6 | 0.0 (4) |
C4A—C3A—C8A—N1A | −179.4 (3) | C4—C3—C8—N1 | −178.8 (3) |
C4A—C3A—C8A—C7A | −0.3 (4) | C4—C3—C8—C7 | 0.7 (4) |
C4A—C5A—C6A—Br2A | −179.4 (2) | C4—C5—C6—Br2 | −179.4 (2) |
C4A—C5A—C6A—C7A | −0.2 (4) | C4—C5—C6—C7 | 0.5 (5) |
C5A—C6A—C7A—C8A | −0.2 (4) | C5—C6—C7—C8 | −0.4 (4) |
C6A—C7A—C8A—N1A | 179.3 (3) | C6—C7—C8—N1 | 179.2 (3) |
C6A—C7A—C8A—C3A | 0.4 (4) | C6—C7—C8—C3 | −0.2 (4) |
C8A—N1A—C1A—O1A | 179.5 (3) | C8—N1—C1—O1 | −179.2 (3) |
C8A—N1A—C1A—C2A | 0.2 (3) | C8—N1—C1—C2 | 0.2 (3) |
C8A—C3A—C4A—C5A | −0.1 (4) | C8—C3—C4—C5 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1Ai | 0.86 (2) | 2.34 (3) | 2.979 (3) | 132 (3) |
N1—H1···O2Ai | 0.86 (2) | 2.40 (2) | 3.191 (3) | 153 (3) |
N1A—H1A···O1Ai | 0.86 (2) | 2.40 (2) | 3.109 (3) | 140 (3) |
N1A—H1A···O1 | 0.86 (2) | 2.13 (2) | 2.835 (3) | 140 (3) |
C7A—H7A···O1 | 0.95 | 2.31 | 3.039 (3) | 133 |
C4—H4···Br2Aii | 0.95 | 3.03 | 3.845 (3) | 145 |
C4A—H4A···Br1iii | 0.95 | 2.94 | 3.777 (3) | 147 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x+1, y−1, z−1. |
Funding information
Funding for this research was provided by: National Science Foundationhttps://doi.org/10.13039/100000001 (award No. CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Golen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160268. Google Scholar
Golen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160700. Google Scholar
Gurung, S., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160177. Google Scholar
Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.