organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(7-Iso­propyl-2,5-di­methyl-8-nitro­naphthalen-1-yl)ethanone

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, bLaboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques, Université Cadi Ayyad, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: aitelhad2017@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 February 2017; accepted 7 March 2017; online 10 March 2017)

The title compound, C17H19NO3, was synthesized in three steps from a mixture of α-, β- and γ-himachalene, which was isolated from an essential oil of the Atlas cedar (Cedrus atlantica). The dihedral angle between the two rings of the naphthalene moiety is 2.54 (5)°. The nitro group and the acetyl group lie almost normal to the mean plane of the naphthalene moiety, making dihedral angles of 80.29 (13) and 83.01 (15)°, respectively, and are inclined to one another by 13.23 (19)°. There is an intra­molecular C—H⋯O hydrogen bond present involving a nitro O atom and the H atom of the methine C atom of the isopropyl group, forming an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpenes α- and β-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) (Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.]; Loubidi et al., 2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). The reactivity of these sesquiterpenes and their derivatives have been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Benharref et al., 2013[Benharref, A., Mazoir, N., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o1777-o1778.], 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.], 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]; Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]). Indeed, these compounds have been tested, using the food poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]). Herein, we report on the crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The naphthalene ring system is approximately planar, with the dihedral angle between the two benzene rings being 2.54 (5)°. The nitro group (N1/O21/O22) and the acteyl group (C11/O11/C12) lie almost normal to the mean plane of the naphthalene moiety, making dihedral angles of 80.29 (13) and 83.01 (15)°, respectively, and are inclined to one another by 13.23 (19)°. There is an intra­molecular C—H⋯O hydrogen bond present involving a nitro O atom, O21, and the H atom of atom C13 of the isopropyl group, forming an S(6) ring motif (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O21 1.00 2.49 3.2063 (16) 128
C12—H12BCgi 0.98 2.79 3.562 (2) 136
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers (Table 1[link] and Fig. 2[link]). There are no other significant inter­molecular inter­actions present.

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The intra­molecular hydrogen bonds are shown as a dashed line and the C—H⋯π inter­actions as blue arrows (see Table 1[link]; H atoms involved are shown as grey balls).

Synthesis and crystallization

In a 250 ml reactor equipped with a magnetic stirrer and a dropping funnel, were introduced 60 ml of di­chloro­methane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, 6 g (30 mmol) of 1,6-dimethyl-4-iso­propyl­naph­talene (Benharref et al., 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]) dissolved in 30 ml of di­chloro­methane were added dropwise through a dropping funnel. The reaction mixture was stirred for 4 h, then 50 ml of ice–water were added and the mixture was extracted with di­chloro­methane. The organic layers were combined, washed with water (5 × 40 ml) and dried over sodium sulfate and then concentrated in vacuo. The residue was subjected to chromatography on a column of silica gel with hexa­ne–ethyl acetate (98:2) as eluent, to obtain 5 g (20 mmol) of 2-isopropyl-4,7-dimethyl-1-nitronaphthalene. 3 g (10 mmol) of the latter compound were treated with two equivalents of acetyl chloride in the presence of 2 equivalents of aluminium chloride in 50 ml of di­chloro­methane with stirring at room temperature for 6 h. After addition of 30 ml of water, the reaction mixture was extracted with di­chloro­methane (3 × 20 ml). The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. Chromatography on a silica gel column with hexa­ne–ethyl acetate (97:3) as eluent of the residue gave the title compound (yield 1.5 g, 6 mmol; 60%). It was recrystallized from cyclo­hexane to obtain colourless plate-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO3
Mr 285.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 10.8570 (5), 9.0549 (4), 14.9550 (7)
β (°) 91.006 (4)
V3) 1469.99 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.45 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 15373, 3005, 2548
Rint 0.024
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.05
No. of reflections 3005
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(7-Isopropyl-2,5-dimethyl-8-nitronaphthalen-1-yl)ethanone top
Crystal data top
C17H19NO3F(000) = 608
Mr = 285.33Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8570 (5) ÅCell parameters from 3005 reflections
b = 9.0549 (4) Åθ = 3.2–26.4°
c = 14.9550 (7) ŵ = 0.09 mm1
β = 91.006 (4)°T = 173 K
V = 1469.99 (12) Å3Plate, colourless
Z = 40.50 × 0.45 × 0.15 mm
Data collection top
Bruker X8 APEX
diffractometer
3005 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.811, Tmax = 1.0k = 1111
15373 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4513P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.18310 (9)0.30707 (12)0.51378 (7)0.0414 (3)
O210.31296 (9)0.05669 (11)0.42478 (7)0.0397 (3)
O220.46037 (9)0.16464 (11)0.49836 (6)0.0387 (3)
N10.39471 (10)0.14874 (11)0.43175 (7)0.0256 (2)
C10.37364 (10)0.39248 (13)0.35320 (7)0.0198 (2)
C20.41980 (10)0.24493 (13)0.35431 (8)0.0210 (3)
C30.49041 (11)0.18396 (13)0.28881 (8)0.0232 (3)
C40.51874 (11)0.27486 (14)0.21482 (8)0.0246 (3)
H40.57020.23640.16960.030*
C50.47494 (10)0.41555 (13)0.20598 (8)0.0224 (3)
C60.40118 (10)0.47684 (13)0.27500 (8)0.0207 (3)
C70.35676 (11)0.62331 (14)0.26845 (8)0.0246 (3)
H70.37250.67910.21610.030*
C80.29211 (12)0.68594 (14)0.33537 (9)0.0278 (3)
H80.26490.78520.32940.033*
C90.26449 (11)0.60652 (14)0.41374 (8)0.0261 (3)
C100.30488 (10)0.46193 (13)0.42254 (8)0.0219 (3)
C110.27223 (11)0.38588 (14)0.50948 (8)0.0258 (3)
C120.35266 (14)0.41952 (18)0.58950 (9)0.0386 (3)
H12A0.34260.52340.60630.058*
H12B0.43890.40100.57490.058*
H12C0.32900.35620.63950.058*
C130.54302 (12)0.02859 (14)0.29434 (9)0.0275 (3)
H130.49550.02760.33980.033*
C140.67745 (13)0.03500 (17)0.32595 (11)0.0409 (4)
H14A0.72430.09750.28520.061*
H14B0.71220.06490.32650.061*
H14C0.68210.07650.38640.061*
C150.53056 (15)0.05265 (16)0.20523 (10)0.0393 (3)
H15A0.44380.05450.18610.059*
H15B0.56080.15400.21230.059*
H32B0.57910.00150.16010.059*
C160.50429 (12)0.50419 (15)0.12365 (8)0.0284 (3)
H16A0.55560.44500.08400.043*
H16B0.54880.59410.14120.043*
H16C0.42750.53100.09220.043*
C170.18716 (14)0.68217 (17)0.48318 (10)0.0384 (3)
H17A0.16890.78340.46390.058*0.5
H17B0.10990.62770.49030.058*0.5
H17C0.23250.68450.54040.058*0.5
H17D0.17200.61370.53250.058*0.5
H17E0.23090.76930.50610.058*0.5
H17F0.10840.71260.45600.058*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0335 (5)0.0469 (6)0.0440 (6)0.0094 (5)0.0081 (4)0.0083 (5)
O210.0422 (6)0.0355 (5)0.0417 (6)0.0116 (4)0.0097 (4)0.0077 (4)
O220.0480 (6)0.0449 (6)0.0229 (5)0.0056 (5)0.0055 (4)0.0064 (4)
N10.0289 (5)0.0240 (5)0.0240 (6)0.0035 (4)0.0048 (4)0.0041 (4)
C10.0177 (5)0.0231 (6)0.0186 (6)0.0035 (4)0.0015 (4)0.0003 (5)
C20.0206 (5)0.0237 (6)0.0186 (6)0.0029 (4)0.0003 (4)0.0036 (5)
C30.0220 (5)0.0241 (6)0.0236 (6)0.0005 (5)0.0017 (4)0.0010 (5)
C40.0240 (6)0.0284 (6)0.0215 (6)0.0003 (5)0.0058 (4)0.0001 (5)
C50.0211 (6)0.0270 (6)0.0192 (6)0.0043 (5)0.0005 (4)0.0024 (5)
C60.0194 (5)0.0238 (6)0.0188 (6)0.0033 (4)0.0022 (4)0.0012 (5)
C70.0246 (6)0.0252 (6)0.0239 (6)0.0022 (5)0.0015 (5)0.0052 (5)
C80.0300 (6)0.0233 (6)0.0302 (7)0.0025 (5)0.0020 (5)0.0017 (5)
C90.0260 (6)0.0278 (6)0.0245 (6)0.0006 (5)0.0003 (5)0.0022 (5)
C100.0199 (5)0.0263 (6)0.0196 (6)0.0021 (5)0.0010 (4)0.0003 (5)
C110.0249 (6)0.0272 (6)0.0255 (7)0.0033 (5)0.0073 (5)0.0001 (5)
C120.0464 (8)0.0473 (9)0.0220 (7)0.0026 (7)0.0002 (6)0.0008 (6)
C130.0295 (6)0.0253 (6)0.0280 (7)0.0028 (5)0.0070 (5)0.0036 (5)
C140.0346 (7)0.0393 (8)0.0486 (9)0.0084 (6)0.0028 (6)0.0014 (7)
C150.0502 (9)0.0266 (7)0.0411 (8)0.0005 (6)0.0036 (7)0.0030 (6)
C160.0317 (6)0.0321 (7)0.0215 (6)0.0009 (5)0.0050 (5)0.0052 (5)
C170.0482 (8)0.0353 (8)0.0320 (8)0.0107 (6)0.0074 (6)0.0030 (6)
Geometric parameters (Å, º) top
O11—C111.2050 (16)C11—C121.5002 (19)
O21—N11.2206 (14)C12—H12A0.9800
O22—N11.2232 (14)C12—H12B0.9800
N1—C21.4783 (15)C12—H12C0.9800
C1—C21.4269 (16)C13—C151.5261 (19)
C1—C61.4327 (16)C13—C141.5273 (19)
C1—C101.4337 (16)C13—H131.0000
C2—C31.3706 (17)C14—H14A0.9800
C3—C41.4172 (17)C14—H14B0.9800
C3—C131.5201 (17)C14—H14C0.9800
C4—C51.3654 (18)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.4295 (17)C15—H32B0.9800
C5—C161.5085 (17)C16—H16A0.9800
C6—C71.4141 (17)C16—H16B0.9800
C7—C81.3567 (18)C16—H16C0.9800
C7—H70.9500C17—H17A0.9800
C8—C91.4118 (18)C17—H17B0.9800
C8—H80.9500C17—H17C0.9800
C9—C101.3862 (18)C17—H17D0.9800
C9—C171.5110 (18)C17—H17E0.9800
C10—C111.5187 (17)C17—H17F0.9800
O21—N1—O22124.23 (11)C15—C13—C14110.99 (12)
O21—N1—C2118.63 (10)C3—C13—H13108.1
O22—N1—C2117.12 (10)C15—C13—H13108.1
C2—C1—C6115.50 (10)C14—C13—H13108.1
C2—C1—C10126.12 (10)C13—C14—H14A109.5
C6—C1—C10118.38 (10)C13—C14—H14B109.5
C3—C2—C1124.71 (11)H14A—C14—H14B109.5
C3—C2—N1115.83 (10)C13—C14—H14C109.5
C1—C2—N1119.43 (10)H14A—C14—H14C109.5
C2—C3—C4117.12 (11)H14B—C14—H14C109.5
C2—C3—C13123.25 (11)C13—C15—H15A109.5
C4—C3—C13119.57 (11)C13—C15—H15B109.5
C5—C4—C3122.51 (11)H15A—C15—H15B109.5
C5—C4—H4118.7C13—C15—H32B109.5
C3—C4—H4118.7H15A—C15—H32B109.5
C4—C5—C6119.40 (11)H15B—C15—H32B109.5
C4—C5—C16119.81 (11)C5—C16—H16A109.5
C6—C5—C16120.78 (11)C5—C16—H16B109.5
C7—C6—C5120.58 (11)H16A—C16—H16B109.5
C7—C6—C1118.74 (11)C5—C16—H16C109.5
C5—C6—C1120.66 (11)H16A—C16—H16C109.5
C8—C7—C6121.41 (11)H16B—C16—H16C109.5
C8—C7—H7119.3C9—C17—H17A109.5
C6—C7—H7119.3C9—C17—H17B109.5
C7—C8—C9121.31 (12)H17A—C17—H17B109.5
C7—C8—H8119.3C9—C17—H17C109.5
C9—C8—H8119.3H17A—C17—H17C109.5
C10—C9—C8119.24 (11)H17B—C17—H17C109.5
C10—C9—C17122.80 (12)C9—C17—H17D109.5
C8—C9—C17117.92 (12)H17A—C17—H17D141.1
C9—C10—C1120.90 (11)H17B—C17—H17D56.3
C9—C10—C11115.55 (11)H17C—C17—H17D56.3
C1—C10—C11123.55 (10)C9—C17—H17E109.5
O11—C11—C12122.30 (12)H17A—C17—H17E56.3
O11—C11—C10120.93 (12)H17B—C17—H17E141.1
C12—C11—C10116.72 (11)H17C—C17—H17E56.3
C11—C12—H12A109.5H17D—C17—H17E109.5
C11—C12—H12B109.5C9—C17—H17F109.5
H12A—C12—H12B109.5H17A—C17—H17F56.3
C11—C12—H12C109.5H17B—C17—H17F56.3
H12A—C12—H12C109.5H17C—C17—H17F141.1
H12B—C12—H12C109.5H17D—C17—H17F109.5
C3—C13—C15111.78 (11)H17E—C17—H17F109.5
C3—C13—C14109.74 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O211.002.493.2063 (16)128
C12—H12B···Cgi0.982.793.562 (2)136
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse, for the X-ray measurements.

References

First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Mazoir, N., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o1777–o1778.  CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds