organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3R,5S,7R,8R,9S,10S,12S,13R,14S)-10,13-Di­methyl-17-[5-oxo-5-(prop-2-yn-1-yl­­oxy)pentan-2-yl]hexa­deca­hydro-1H-cyclo­penta[a]phenanthrene-3,7,12-triyl tri­acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 February 2017; accepted 20 March 2017; online 28 March 2017)

In the title compound, C33H48O8, four terminal H atoms of cholic acid are replaced by three acetyl and one terminal alkyne group. All the acetyl residues are twisted with respect to the rings (A, B and C) to which they are attached. The cyclo­pentane ring D adopts an envelope conformation with the methyl-substituted C atom as the flap. Rings A, B and C have chair conformations. The dihedral angle between the mean planes of rings C and D is 4.70 (11)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cholic acid is one of the two major bile acids produced by the liver (Suryanarayana Ch et al., 2014[Suryanarayana Ch, V., Reddy, O. S., Babu, B. H. & Anuradha, V. (2014). Res. J. Pharm. Biol. Chem. Sci. 5, 27.]; Yadav & Kumar, 2014[Yadav, R. S. & Kumar, K. E. (2014). J. Anal. Bioanal. Tech. 5, 1-9.]). Combinations of bile acids and drugs can lead to cholesterol-lowering agents (Tamminen & Kolehmainen, 2001[Tamminen, J. & Kolehmainen, E. (2001). Molecules, 6, 21-46.]). The introduction of a bile acid group at the 20-position of camptochecin was found to decrease toxicity in vivo and improve selectivity for hepatoma cells (Li et al., 2014[Li, X., Zhao, T., Cheng, D., Chu, C., Tong, S., Yan, J. & Li, Q. Y. (2014). Molecules, 19, 3761-3776.]). Bile acid esters may find applications in mol­ecular recognition, supra­molecular chemistry and in pharmacology (Pospieszny et al., 2014[Pospieszny, T., Koenig, H., Kowalczyk, I. & Brycki, B. (2014). Molecules, 19, 2557-2570.]). We report herein on the synthesis and crystal structure of the title cholic acid derivative.

In the title compound, Fig. 1[link], the acetyl residues are twisted with respect to the rings to which they are attached as shown by the torsion angles [C2—O2—C3—C4 = 147.4 (2)°, C20—O6—C18—C17 = −152.3 (2)°, C14—O3—C7—C8 = 130.8 (2)°]. Rings A, B and C have chair conformations. The cyclo­pentane (C16/C17/C22/C23/C25) ring D adopts an envelope conformation with atom C17 [displacement = −0.7144 Å] as the flap. The puckering parameters are Q(2) = 0.474 (3) Å, φ(2) = 211.6 (3)°. The dihedral angle between the mean planes of rings C and D is 4.70 (11)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional structure (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4i 0.96 2.58 3.521 (5) 166
C6—H6A⋯O1ii 0.97 2.50 3.357 (4) 147
C21—H21C⋯O5iii 0.96 2.50 3.450 (5) 171
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dotted lines (see Table 1[link]) and, for clarity, only H atoms H1B, H6A and H21C have been included.

Synthesis and crystallization

This terminal alkyne was prepared by esterification of cholic acid (1 g, 2.4 mmol) in propargyl alcohol (5–10 ml), to which a catalytic amount (10 mol %) of para-toluene sulfonic acid (PTSA) was added. The reaction mixture was then heated at 328–333 K for 7 h to give the propargyl ester (yield 95%). Then the propargyl ester compound (2 g, 4.52 mmol) in CH2Cl2 was treated with acetic anhydride (1 ml) at 273 K, followed by a solution of tri­methyl­silyl tri­fluoro­methane­sulfonate (26 µl, 0.14 mmol) in CH2Cl2 to give the acetyl­ated terminal alkyne title compound (yield 89%). Colourless block-like crystals were obtained by the slow evaporation method.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C33H48O8
Mr 572.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 9.7437 (3), 12.2437 (3), 26.8215 (10)
V3) 3199.78 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.785, 0.856
No. of measured, independent and observed [I > 2σ(I)] reflections 38159, 5634, 4628
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 0.98
No. of reflections 5634
No. of parameters 376
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.12
Absolute structure Flack x determined using 1758 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(3R,5S,7R,8R,9S,10S,12S,13R,14S)-10,13-Dimethyl-17-[5-oxo-5-(prop-2-yn-1-yloxy)pentan-2-yl]hexadecahydro-1H-cyclopenta[a]phenanthrene-3,7,12-triyl triacetate top
Crystal data top
C33H48O8Dx = 1.189 Mg m3
Mr = 572.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5634 reflections
a = 9.7437 (3) Åθ = 2.6–25.0°
b = 12.2437 (3) ŵ = 0.08 mm1
c = 26.8215 (10) ÅT = 296 K
V = 3199.78 (17) Å3Block, colourless
Z = 40.25 × 0.19 × 0.13 mm
F(000) = 1240
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4628 reflections with I > 2σ(I)
ω and φ scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 25.0°, θmin = 2.6°
Tmin = 0.785, Tmax = 0.856h = 1111
38159 measured reflectionsk = 1414
5634 independent reflectionsl = 3125
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.4364P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
5634 reflectionsΔρmax = 0.13 e Å3
376 parametersΔρmin = 0.12 e Å3
0 restraintsAbsolute structure: Flack x determined using 1758 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5885 (4)0.2288 (3)0.14363 (14)0.0804 (10)
H1A0.5143270.2803080.1423390.121*
H1B0.6541380.2518520.1681810.121*
H1C0.6322030.2250220.1115880.121*
C20.5343 (3)0.1192 (2)0.15724 (10)0.0569 (7)
C30.5935 (3)0.0648 (2)0.17617 (11)0.0562 (7)
H30.5109280.0607470.1969490.067*
C40.7087 (3)0.1118 (2)0.20652 (10)0.0531 (7)
H4A0.7920350.1119830.1867200.064*
H4B0.7243970.0659470.2354630.064*
C50.6772 (3)0.2288 (2)0.22377 (10)0.0525 (6)
H50.5963710.2240910.2454030.063*
C60.7930 (3)0.2760 (2)0.25562 (10)0.0537 (7)
H6A0.7569850.3371670.2745160.064*
H6B0.8219300.2207860.2793290.064*
C70.9172 (3)0.3142 (2)0.22703 (9)0.0478 (6)
H70.9770810.3557800.2494540.057*
C80.8814 (2)0.38515 (19)0.18193 (9)0.0434 (5)
H80.8435310.4538790.1946520.052*
C90.7693 (2)0.33099 (19)0.14966 (9)0.0411 (5)
H90.8064410.2603790.1389800.049*
C100.6379 (2)0.3056 (2)0.18003 (9)0.0478 (6)
C110.5276 (3)0.2487 (2)0.14848 (11)0.0558 (7)
H11A0.4435140.2452430.1677900.067*
H11B0.5093480.2933260.1193280.067*
C120.5635 (3)0.1341 (2)0.13123 (11)0.0575 (7)
H12A0.4875080.1032520.1126260.069*
H12B0.6432190.1364060.1095810.069*
C130.5717 (3)0.4105 (2)0.20055 (12)0.0648 (8)
H13A0.5439220.4563420.1733010.097*
H13B0.6368890.4488610.2208820.097*
H13C0.4928490.3918320.2202570.097*
C141.1101 (3)0.1914 (2)0.22900 (12)0.0594 (7)
C151.1751 (3)0.1001 (3)0.20203 (15)0.0837 (10)
H15A1.2565890.0777910.2193620.125*
H15B1.1986880.1231840.1689200.125*
H15C1.1122090.0398430.2002550.125*
C161.0058 (2)0.41322 (18)0.15097 (9)0.0433 (6)
H161.0420560.3440050.1382040.052*
C170.9756 (2)0.48537 (17)0.10507 (9)0.0411 (6)
C180.8705 (2)0.42596 (18)0.07285 (9)0.0421 (5)
H180.8460580.4714110.0441180.051*
C190.7419 (2)0.3965 (2)0.10197 (9)0.0477 (6)
H19A0.6816620.3543630.0805610.057*
H19B0.6941820.4632970.1108020.057*
C200.8925 (3)0.2823 (2)0.01253 (11)0.0560 (7)
C210.9587 (4)0.1752 (3)0.00386 (14)0.0862 (11)
H21A0.9327330.1480050.0283580.129*
H21B0.9297860.1245320.0290900.129*
H21C1.0566360.1834560.0052320.129*
C221.1252 (3)0.4716 (2)0.17613 (10)0.0572 (7)
H22A1.1825610.4202490.1941050.069*
H22B1.0921840.5266410.1992370.069*
C231.2048 (3)0.5244 (2)0.13309 (11)0.0593 (7)
H23A1.2961030.4933080.1307520.071*
H23B1.2132770.6024870.1384390.071*
C240.9133 (3)0.5965 (2)0.11969 (10)0.0537 (7)
H24A0.8792190.6324840.0904000.081*
H24B0.9825510.6409790.1350320.081*
H24C0.8392660.5852490.1427510.081*
C251.1229 (2)0.50142 (19)0.08477 (10)0.0454 (6)
H251.1537320.4304610.0720990.054*
C261.0909 (3)0.5427 (3)0.00699 (11)0.0765 (9)
H26A1.1023300.5980790.0320110.115*
H26B0.9953120.5250560.0038410.115*
H26C1.1411340.4785700.0164760.115*
C271.1448 (3)0.5849 (2)0.04282 (10)0.0505 (6)
H271.0924470.6506290.0513620.061*
C281.2958 (3)0.6182 (2)0.03765 (12)0.0602 (7)
H28A1.3297220.6410000.0700150.072*
H28B1.3486020.5548800.0273810.072*
C291.3199 (3)0.7103 (2)0.00028 (12)0.0654 (8)
H29A1.4167610.7284450.0000170.078*
H29B1.2956390.6846230.0327810.078*
C301.2399 (3)0.8103 (2)0.01140 (12)0.0578 (7)
C311.1945 (3)0.9435 (3)0.07318 (14)0.0818 (10)
H31A1.2540160.9848530.0951800.098*
H31B1.1754730.9882370.0441560.098*
C321.0680 (4)0.9200 (3)0.09856 (15)0.0825 (10)
C330.9674 (5)0.9057 (4)0.1203 (2)0.129 (2)
H330.8863320.8941840.1378350.155*
O10.4159 (2)0.09753 (19)0.16330 (9)0.0834 (7)
O20.63337 (18)0.04528 (15)0.16157 (8)0.0655 (5)
O30.99245 (17)0.22008 (13)0.20794 (6)0.0498 (4)
O41.1558 (3)0.2353 (2)0.26508 (11)0.1107 (9)
O50.8116 (3)0.3256 (2)0.01447 (8)0.0902 (7)
O60.93469 (17)0.32513 (13)0.05577 (6)0.0472 (4)
O71.1635 (3)0.8556 (2)0.01680 (9)0.0875 (7)
O81.2641 (2)0.84560 (17)0.05769 (9)0.0721 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.087 (2)0.0656 (18)0.089 (2)0.0076 (17)0.005 (2)0.0035 (18)
C20.0585 (18)0.0649 (17)0.0474 (17)0.0133 (14)0.0018 (13)0.0045 (14)
C30.0453 (14)0.0542 (15)0.0689 (19)0.0010 (12)0.0087 (13)0.0061 (14)
C40.0492 (14)0.0542 (15)0.0560 (17)0.0034 (12)0.0039 (12)0.0117 (13)
C50.0479 (14)0.0641 (16)0.0456 (15)0.0061 (12)0.0075 (12)0.0055 (13)
C60.0597 (16)0.0596 (15)0.0417 (15)0.0102 (13)0.0011 (13)0.0040 (13)
C70.0532 (14)0.0489 (13)0.0414 (14)0.0091 (12)0.0075 (12)0.0034 (12)
C80.0453 (13)0.0436 (12)0.0413 (14)0.0087 (11)0.0081 (11)0.0021 (11)
C90.0394 (12)0.0436 (12)0.0402 (13)0.0068 (10)0.0050 (10)0.0004 (11)
C100.0412 (13)0.0561 (14)0.0461 (15)0.0091 (11)0.0010 (11)0.0015 (12)
C110.0397 (13)0.0681 (17)0.0594 (17)0.0019 (12)0.0002 (12)0.0125 (14)
C120.0407 (13)0.0712 (18)0.0606 (18)0.0093 (13)0.0038 (13)0.0021 (15)
C130.0562 (15)0.0718 (18)0.0662 (19)0.0211 (14)0.0042 (14)0.0016 (15)
C140.0479 (15)0.0650 (17)0.0654 (19)0.0055 (13)0.0097 (14)0.0143 (15)
C150.0627 (19)0.071 (2)0.117 (3)0.0238 (16)0.0014 (19)0.009 (2)
C160.0435 (12)0.0402 (12)0.0462 (15)0.0040 (10)0.0110 (11)0.0001 (11)
C170.0444 (13)0.0359 (12)0.0429 (14)0.0041 (10)0.0081 (11)0.0013 (11)
C180.0446 (12)0.0406 (12)0.0412 (14)0.0072 (11)0.0072 (11)0.0024 (11)
C190.0404 (13)0.0555 (14)0.0473 (15)0.0059 (11)0.0097 (11)0.0014 (12)
C200.0538 (16)0.0635 (16)0.0508 (17)0.0136 (14)0.0042 (14)0.0096 (14)
C210.087 (2)0.077 (2)0.094 (3)0.0103 (19)0.015 (2)0.035 (2)
C220.0571 (15)0.0578 (15)0.0567 (17)0.0071 (13)0.0207 (14)0.0036 (13)
C230.0510 (15)0.0601 (16)0.0667 (19)0.0063 (13)0.0138 (14)0.0076 (14)
C240.0626 (16)0.0436 (14)0.0550 (17)0.0087 (12)0.0034 (13)0.0013 (12)
C250.0452 (13)0.0393 (12)0.0515 (15)0.0011 (11)0.0061 (12)0.0020 (11)
C260.087 (2)0.087 (2)0.0558 (19)0.0230 (19)0.0046 (17)0.0114 (17)
C270.0500 (14)0.0440 (13)0.0574 (17)0.0007 (11)0.0002 (12)0.0040 (12)
C280.0497 (15)0.0532 (15)0.078 (2)0.0049 (12)0.0063 (14)0.0024 (15)
C290.0563 (17)0.0644 (17)0.075 (2)0.0052 (14)0.0220 (15)0.0002 (16)
C300.0508 (16)0.0577 (16)0.065 (2)0.0120 (14)0.0117 (14)0.0120 (15)
C310.083 (2)0.0592 (18)0.104 (3)0.0011 (17)0.021 (2)0.0128 (19)
C320.069 (2)0.079 (2)0.099 (3)0.0073 (18)0.008 (2)0.031 (2)
C330.091 (3)0.142 (4)0.154 (5)0.037 (3)0.039 (3)0.074 (3)
O10.0550 (13)0.0956 (16)0.0996 (18)0.0194 (11)0.0163 (12)0.0127 (13)
O20.0462 (10)0.0583 (11)0.0920 (15)0.0041 (9)0.0068 (10)0.0036 (10)
O30.0472 (9)0.0511 (9)0.0512 (10)0.0094 (8)0.0096 (8)0.0028 (8)
O40.0982 (18)0.128 (2)0.106 (2)0.0338 (16)0.0610 (17)0.0203 (18)
O50.1014 (18)0.1056 (17)0.0635 (14)0.0045 (15)0.0307 (14)0.0190 (14)
O60.0518 (9)0.0449 (9)0.0449 (10)0.0001 (8)0.0045 (8)0.0066 (8)
O70.0863 (16)0.0937 (17)0.0826 (16)0.0075 (14)0.0046 (14)0.0205 (14)
O80.0758 (13)0.0678 (13)0.0728 (14)0.0079 (11)0.0006 (11)0.0074 (11)
Geometric parameters (Å, º) top
C1—C21.488 (4)C16—H160.9800
C1—H1A0.9600C17—C181.524 (3)
C1—H1B0.9600C17—C241.540 (3)
C1—H1C0.9600C17—C251.548 (3)
C2—O11.194 (3)C18—O61.458 (3)
C2—O21.328 (3)C18—C191.520 (3)
C3—O21.456 (3)C18—H180.9800
C3—C41.501 (4)C19—H19A0.9700
C3—C121.503 (4)C19—H19B0.9700
C3—H30.9800C20—O51.195 (3)
C4—C51.536 (4)C20—O61.337 (3)
C4—H4A0.9700C20—C211.480 (4)
C4—H4B0.9700C21—H21A0.9600
C5—C61.529 (4)C21—H21B0.9600
C5—C101.552 (4)C21—H21C0.9600
C5—H50.9800C22—C231.534 (4)
C6—C71.507 (4)C22—H22A0.9700
C6—H6A0.9700C22—H22B0.9700
C6—H6B0.9700C23—C251.548 (4)
C7—O31.459 (3)C23—H23A0.9700
C7—C81.529 (3)C23—H23B0.9700
C7—H70.9800C24—H24A0.9600
C8—C161.509 (3)C24—H24B0.9600
C8—C91.543 (3)C24—H24C0.9600
C8—H80.9800C25—C271.535 (3)
C9—C191.533 (3)C25—H250.9800
C9—C101.549 (3)C26—C271.526 (4)
C9—H90.9800C26—H26A0.9600
C10—C111.535 (4)C26—H26B0.9600
C10—C131.539 (4)C26—H26C0.9600
C11—C121.518 (4)C27—C281.533 (4)
C11—H11A0.9700C27—H270.9800
C11—H11B0.9700C28—C291.527 (4)
C12—H12A0.9700C28—H28A0.9700
C12—H12B0.9700C28—H28B0.9700
C13—H13A0.9600C29—C301.482 (4)
C13—H13B0.9600C29—H29A0.9700
C13—H13C0.9600C29—H29B0.9700
C14—O41.193 (4)C30—O71.197 (3)
C14—O31.325 (3)C30—O81.336 (4)
C14—C151.475 (4)C31—C321.437 (5)
C15—H15A0.9600C31—O81.438 (4)
C15—H15B0.9600C31—H31A0.9700
C15—H15C0.9600C31—H31B0.9700
C16—C221.523 (3)C32—C331.154 (5)
C16—C171.543 (3)C33—H330.9300
C2—C1—H1A109.5C18—C17—C24107.54 (19)
C2—C1—H1B109.5C18—C17—C16107.88 (18)
H1A—C1—H1B109.5C24—C17—C16112.2 (2)
C2—C1—H1C109.5C18—C17—C25118.9 (2)
H1A—C1—H1C109.5C24—C17—C25110.05 (19)
H1B—C1—H1C109.5C16—C17—C25100.16 (18)
O1—C2—O2122.6 (3)O6—C18—C19108.32 (18)
O1—C2—C1125.2 (3)O6—C18—C17107.13 (17)
O2—C2—C1112.2 (3)C19—C18—C17112.0 (2)
O2—C3—C4107.5 (2)O6—C18—H18109.8
O2—C3—C12111.0 (2)C19—C18—H18109.8
C4—C3—C12111.3 (2)C17—C18—H18109.8
O2—C3—H3109.0C18—C19—C9114.15 (19)
C4—C3—H3109.0C18—C19—H19A108.7
C12—C3—H3109.0C9—C19—H19A108.7
C3—C4—C5111.8 (2)C18—C19—H19B108.7
C3—C4—H4A109.3C9—C19—H19B108.7
C5—C4—H4A109.3H19A—C19—H19B107.6
C3—C4—H4B109.3O5—C20—O6123.6 (3)
C5—C4—H4B109.3O5—C20—C21125.9 (3)
H4A—C4—H4B107.9O6—C20—C21110.5 (3)
C6—C5—C4111.9 (2)C20—C21—H21A109.5
C6—C5—C10112.0 (2)C20—C21—H21B109.5
C4—C5—C10112.8 (2)H21A—C21—H21B109.5
C6—C5—H5106.5C20—C21—H21C109.5
C4—C5—H5106.5H21A—C21—H21C109.5
C10—C5—H5106.5H21B—C21—H21C109.5
C7—C6—C5115.2 (2)C16—C22—C23104.5 (2)
C7—C6—H6A108.5C16—C22—H22A110.8
C5—C6—H6A108.5C23—C22—H22A110.8
C7—C6—H6B108.5C16—C22—H22B110.8
C5—C6—H6B108.5C23—C22—H22B110.8
H6A—C6—H6B107.5H22A—C22—H22B108.9
O3—C7—C6109.7 (2)C22—C23—C25107.0 (2)
O3—C7—C8106.60 (19)C22—C23—H23A110.3
C6—C7—C8113.3 (2)C25—C23—H23A110.3
O3—C7—H7109.1C22—C23—H23B110.3
C6—C7—H7109.1C25—C23—H23B110.3
C8—C7—H7109.1H23A—C23—H23B108.6
C16—C8—C7112.40 (19)C17—C24—H24A109.5
C16—C8—C9110.94 (19)C17—C24—H24B109.5
C7—C8—C9111.19 (19)H24A—C24—H24B109.5
C16—C8—H8107.3C17—C24—H24C109.5
C7—C8—H8107.3H24A—C24—H24C109.5
C9—C8—H8107.3H24B—C24—H24C109.5
C19—C9—C8111.49 (19)C27—C25—C23114.9 (2)
C19—C9—C10113.55 (19)C27—C25—C17118.1 (2)
C8—C9—C10112.09 (19)C23—C25—C17101.9 (2)
C19—C9—H9106.4C27—C25—H25107.1
C8—C9—H9106.4C23—C25—H25107.1
C10—C9—H9106.4C17—C25—H25107.1
C11—C10—C13106.4 (2)C27—C26—H26A109.5
C11—C10—C9112.3 (2)C27—C26—H26B109.5
C13—C10—C9111.6 (2)H26A—C26—H26B109.5
C11—C10—C5108.3 (2)C27—C26—H26C109.5
C13—C10—C5109.8 (2)H26A—C26—H26C109.5
C9—C10—C5108.37 (19)H26B—C26—H26C109.5
C12—C11—C10115.2 (2)C26—C27—C28109.9 (2)
C12—C11—H11A108.5C26—C27—C25111.6 (2)
C10—C11—H11A108.5C28—C27—C25112.1 (2)
C12—C11—H11B108.5C26—C27—H27107.6
C10—C11—H11B108.5C28—C27—H27107.6
H11A—C11—H11B107.5C25—C27—H27107.6
C3—C12—C11108.8 (2)C29—C28—C27113.8 (2)
C3—C12—H12A109.9C29—C28—H28A108.8
C11—C12—H12A109.9C27—C28—H28A108.8
C3—C12—H12B109.9C29—C28—H28B108.8
C11—C12—H12B109.9C27—C28—H28B108.8
H12A—C12—H12B108.3H28A—C28—H28B107.7
C10—C13—H13A109.5C30—C29—C28113.4 (2)
C10—C13—H13B109.5C30—C29—H29A108.9
H13A—C13—H13B109.5C28—C29—H29A108.9
C10—C13—H13C109.5C30—C29—H29B108.9
H13A—C13—H13C109.5C28—C29—H29B108.9
H13B—C13—H13C109.5H29A—C29—H29B107.7
O4—C14—O3123.3 (3)O7—C30—O8123.2 (3)
O4—C14—C15125.4 (3)O7—C30—C29125.6 (3)
O3—C14—C15111.3 (3)O8—C30—C29111.2 (3)
C14—C15—H15A109.5C32—C31—O8112.0 (3)
C14—C15—H15B109.5C32—C31—H31A109.2
H15A—C15—H15B109.5O8—C31—H31A109.2
C14—C15—H15C109.5C32—C31—H31B109.2
H15A—C15—H15C109.5O8—C31—H31B109.2
H15B—C15—H15C109.5H31A—C31—H31B107.9
C8—C16—C22118.5 (2)C33—C32—C31176.6 (4)
C8—C16—C17114.59 (19)C32—C33—H33180.0
C22—C16—C17103.31 (19)C2—O2—C3117.4 (2)
C8—C16—H16106.6C14—O3—C7119.6 (2)
C22—C16—H16106.6C20—O6—C18118.2 (2)
C17—C16—H16106.6C30—O8—C31117.0 (3)
O2—C3—C4—C5179.8 (2)C16—C17—C18—O663.5 (2)
C12—C3—C4—C558.0 (3)C25—C17—C18—O649.5 (3)
C3—C4—C5—C6178.8 (2)C24—C17—C18—C1966.0 (2)
C3—C4—C5—C1053.8 (3)C16—C17—C18—C1955.2 (2)
C4—C5—C6—C777.4 (3)C25—C17—C18—C19168.15 (19)
C10—C5—C6—C750.4 (3)O6—C18—C19—C963.7 (3)
C5—C6—C7—O371.7 (3)C17—C18—C19—C954.3 (3)
C5—C6—C7—C847.3 (3)C8—C9—C19—C1849.9 (3)
O3—C7—C8—C1653.6 (2)C10—C9—C19—C18177.7 (2)
C6—C7—C8—C16174.3 (2)C8—C16—C22—C23159.5 (2)
O3—C7—C8—C971.4 (2)C17—C16—C22—C2331.6 (3)
C6—C7—C8—C949.3 (3)C16—C22—C23—C253.9 (3)
C16—C8—C9—C1949.1 (2)C22—C23—C25—C27154.0 (2)
C7—C8—C9—C19174.9 (2)C22—C23—C25—C1725.0 (3)
C16—C8—C9—C10177.62 (19)C18—C17—C25—C2772.5 (3)
C7—C8—C9—C1056.5 (2)C24—C17—C25—C2752.1 (3)
C19—C9—C10—C1154.2 (3)C16—C17—C25—C27170.4 (2)
C8—C9—C10—C11178.35 (18)C18—C17—C25—C23160.6 (2)
C19—C9—C10—C1365.2 (3)C24—C17—C25—C2374.8 (2)
C8—C9—C10—C1362.3 (3)C16—C17—C25—C2343.5 (2)
C19—C9—C10—C5173.8 (2)C23—C25—C27—C26165.7 (2)
C8—C9—C10—C558.7 (2)C17—C25—C27—C2673.9 (3)
C6—C5—C10—C11176.7 (2)C23—C25—C27—C2841.9 (3)
C4—C5—C10—C1149.3 (3)C17—C25—C27—C28162.3 (2)
C6—C5—C10—C1367.5 (3)C26—C27—C28—C2961.6 (3)
C4—C5—C10—C13165.1 (2)C25—C27—C28—C29173.6 (2)
C6—C5—C10—C954.5 (3)C27—C28—C29—C3056.5 (4)
C4—C5—C10—C972.8 (3)C28—C29—C30—O7125.2 (3)
C13—C10—C11—C12170.7 (2)C28—C29—C30—O855.2 (3)
C9—C10—C11—C1267.0 (3)O1—C2—O2—C32.4 (4)
C5—C10—C11—C1252.7 (3)C1—C2—O2—C3178.3 (3)
O2—C3—C12—C11178.0 (2)C4—C3—O2—C2147.4 (2)
C4—C3—C12—C1158.3 (3)C12—C3—O2—C290.6 (3)
C10—C11—C12—C357.6 (3)O4—C14—O3—C74.2 (4)
C7—C8—C16—C2257.2 (3)C15—C14—O3—C7175.6 (2)
C9—C8—C16—C22177.6 (2)C6—C7—O3—C14106.3 (2)
C7—C8—C16—C17179.65 (19)C8—C7—O3—C14130.8 (2)
C9—C8—C16—C1755.2 (2)O5—C20—O6—C185.1 (4)
C8—C16—C17—C1857.6 (2)C21—C20—O6—C18174.3 (2)
C22—C16—C17—C18172.10 (19)C19—C18—O6—C2086.6 (2)
C8—C16—C17—C2460.7 (3)C17—C18—O6—C20152.3 (2)
C22—C16—C17—C2469.6 (2)O7—C30—O8—C310.6 (4)
C8—C16—C17—C25177.35 (19)C29—C30—O8—C31179.1 (2)
C22—C16—C17—C2547.1 (2)C32—C31—O8—C3093.7 (4)
C24—C17—C18—O6175.33 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4i0.962.583.521 (5)166
C6—H6A···O1ii0.972.503.357 (4)147
C21—H21C···O5iii0.962.503.450 (5)171
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, X., Zhao, T., Cheng, D., Chu, C., Tong, S., Yan, J. & Li, Q. Y. (2014). Molecules, 19, 3761–3776.  CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPospieszny, T., Koenig, H., Kowalczyk, I. & Brycki, B. (2014). Molecules, 19, 2557–2570.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryanarayana Ch, V., Reddy, O. S., Babu, B. H. & Anuradha, V. (2014). Res. J. Pharm. Biol. Chem. Sci. 5, 27.  Google Scholar
First citationTamminen, J. & Kolehmainen, E. (2001). Molecules, 6, 21–46.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, R. S. & Kumar, K. E. (2014). J. Anal. Bioanal. Tech. 5, 1–9.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds