organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-{[3-(Thio­phen-2-yl)-4,5-di­hydro-1,2-oxazol-5-yl]methyl}-2,3-di­hydro-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: irayni@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 February 2017; accepted 25 February 2017; online 13 October 2017)

In the title compound, C16H12N2O3S, the indoline and thio­phene rings are inclined to one another by 2.01 (2)°. The isoxazole ring adopts an envelope conformation, with the methine C atom as the flap, and its mean plane is inclined to the thio­phene and indoline ring mean planes by 19.78 (14) and 20.83 (12)°, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds involving the same acceptor atom, forming chains propagating along [010]. The chains are linked by further C—H⋯O hydrogen bonds, forming slabs parallel to the (-103) plane. The slabs are linked by offset ππ inter­actions [inter­centroid distance = 3.792 (1) Å], forming a three-dimensional supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin (indoline-2,3-dione) is a core constituent of many alkaloids and drugs (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]), as well as dyes, pesticides and analytical reagents. Literature surveys reveal that various derivatives of isatin possess diverse biological activities, such as anti­bacterial, anti­fungal, anti­viral, anti-HIV (Bal et al., 2005[Bal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451-4455.]), anti-microbacterial, anti­cancer (Gürsoy & Karalı, 2003[Gürsoy, A. & Karalı, N. (2003). Eur. J. Med. Chem. 38, 633-643.]), anti-inflammatory (Sridhar & Ramesh, 2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]) and anti­convulsant activities (Verma et al., 2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]). Continuing our research on the synthesis of new heterocyclic systems containing isatin and other moieties (Alsubari et al., 2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337-346.]; Bouhfid et al., 2006[Bouhfid, R., Moussaif, A., Joly, N., Massoui, M., Martin, P. & Essassi, E. M. (2006). ChemInform, 37: no. doi: 10.1002/chin. 200621121 (J. Maroc. Heterocycl. 5, 23-44).]), we report herein on the synthesis and crystal structure of the title compound, Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 40% probability displacement ellipsoids.

In the title compound, the indole ring system is almost planar as expected (r.m.s. deviation = 0.023 Å). The dihedral angle between this plane and that of the thio­phene ring (r.m.s. deviation = 0.012 Å) is 2.01 (2)°. Puckering analysis of the isoxazole ring [parameters Q(2) = 0.175 (2) Å and φ(2) = 326.2 (8)°], indicates that it has an envelope conformation with atom C10 as the flap. Its mean plane is inclined to the thio­phene and indoline ring mean planes by 19.78 (14) and 20.83 (12)°, respectively.

In the crystal, the combination of C2—H2⋯O2i, C9—H9A⋯O2i and C16—H16⋯O1ii hydrogen bonds (Table 1[link]) forms stepped layers, or slabs two mol­ecules thick, which are oriented parallel to ([\overline{1}]03); as shown in Fig. 2[link]. These layers are associated through offset π-stacking inter­actions, involving inversion-related indole rings in adjacent layers, forming a supra­molecular three-dimensional structure [CgCgiii = 3.792 (1) Å, Cg is the centroid of the N1/C1–C8 ring, inter­planar distance = 3.479 (1) Å, slippage = 1.508 Å, symmetry code (iii): −x + 2, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.88 (3) 2.60 (3) 3.455 (3) 162 (2)
C9—H9A⋯O2i 0.98 (3) 2.39 (3) 3.297 (3) 153.7 (19)
C16—H16⋯O1ii 0.93 2.49 3.212 (4) 134
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

To a solution of 0.4 g (2.18 mmol) of 1-allyl­indoline-2,3-dione and 0.5 g (4 mmol) of 2-thio­phene­carboxaldehyde oxime in 15 ml of chloro­form, were added 15 ml of bleach (24% weight) with a dropping funnel. The mixture was stirred for 4 h at 273 K. The solution was then concentrated to dryness under reduced pressure and the residue extracted with chloro­form. The product isolated was chromatographed on a silica column (eluent: hexa­ne/ethyl acetate 95:5 v/v). The solid obtained was crystallized from ethanol solution to give colourless rod-like crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12N2O3S
Mr 312.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 7.3834 (2), 11.7331 (3), 16.9144 (4)
β (°) 101.731 (1)
V3) 1434.69 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.14
Crystal size (mm) 0.24 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.64, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 10930, 2899, 2500
Rint 0.031
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.166, 1.06
No. of reflections 2899
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-{[3-(Thiophen-2-yl)-4,5-dihydro-1,2-oxazol-5-yl]methyl}-2,3-dihydro-1H-indole-2,3-dione top
Crystal data top
C16H12N2O3SF(000) = 648
Mr = 312.34Dx = 1.446 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.3834 (2) ÅCell parameters from 8282 reflections
b = 11.7331 (3) Åθ = 3.8–74.3°
c = 16.9144 (4) ŵ = 2.14 mm1
β = 101.731 (1)°T = 298 K
V = 1434.69 (6) Å3Rod, colourless
Z = 40.24 × 0.19 × 0.14 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2899 independent reflections
Radiation source: INCOATEC IµS micro-focus source2500 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 74.7°, θmin = 4.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.64, Tmax = 0.76l = 1820
10930 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.089P)2 + 0.7078P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H-atoms of the thiophene moiety, although located in a difference map, did not refine satisfactorily and so were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04891 (11)0.36107 (6)0.11798 (5)0.0697 (3)
O11.1460 (3)0.26341 (19)0.43119 (14)0.0835 (7)
O20.8130 (3)0.26371 (15)0.30166 (14)0.0718 (5)
O30.4468 (2)0.41608 (18)0.32154 (12)0.0679 (6)
N10.8448 (2)0.45816 (15)0.31846 (11)0.0434 (4)
N20.2829 (3)0.39068 (19)0.26398 (14)0.0600 (6)
C10.9740 (3)0.53126 (18)0.36675 (12)0.0410 (5)
C20.9783 (3)0.6487 (2)0.36514 (16)0.0526 (6)
H20.900 (4)0.691 (2)0.3307 (18)0.063 (8)*
C31.1224 (4)0.7019 (3)0.41754 (19)0.0687 (8)
H31.130 (5)0.778 (3)0.415 (2)0.081 (10)*
C41.2542 (4)0.6412 (3)0.47017 (19)0.0729 (8)
H41.347 (5)0.685 (3)0.508 (2)0.082 (10)*
C51.2494 (3)0.5240 (3)0.47092 (16)0.0640 (7)
H51.332 (5)0.486 (3)0.506 (2)0.083 (10)*
C61.1086 (3)0.4687 (2)0.41850 (13)0.0486 (5)
C71.0666 (4)0.3480 (2)0.40177 (16)0.0560 (6)
C80.8915 (3)0.34648 (19)0.33422 (15)0.0509 (5)
C90.6847 (3)0.4973 (2)0.26000 (13)0.0445 (5)
H9A0.715 (3)0.566 (2)0.2327 (15)0.048 (6)*
H9B0.656 (4)0.439 (2)0.2200 (16)0.053 (7)*
C100.5214 (3)0.5228 (2)0.29834 (16)0.0525 (6)
H100.550 (4)0.557 (3)0.3435 (18)0.062 (8)*
C110.3615 (3)0.5784 (2)0.24054 (18)0.0553 (6)
H11A0.299 (5)0.641 (3)0.267 (2)0.102 (12)*
H11B0.403 (4)0.607 (3)0.1921 (19)0.071 (8)*
C120.2347 (3)0.47894 (19)0.22011 (14)0.0464 (5)
C130.0679 (3)0.4814 (2)0.15739 (14)0.0492 (5)
C140.0204 (3)0.5768 (2)0.12228 (15)0.0567 (6)
H140.02210.65060.13450.068*
C150.1833 (5)0.5507 (3)0.06558 (19)0.0782 (9)
H150.26180.60580.03760.094*
C160.2132 (5)0.4392 (3)0.05624 (18)0.0768 (8)
H160.31240.40780.02010.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0667 (5)0.0567 (4)0.0878 (5)0.0080 (3)0.0209 (4)0.0166 (3)
O10.0917 (15)0.0672 (12)0.0930 (15)0.0322 (11)0.0222 (12)0.0312 (11)
O20.0805 (13)0.0373 (9)0.0984 (14)0.0077 (9)0.0201 (11)0.0075 (9)
O30.0485 (9)0.0835 (13)0.0735 (12)0.0074 (9)0.0166 (8)0.0340 (10)
N10.0412 (9)0.0336 (9)0.0540 (10)0.0005 (7)0.0063 (8)0.0014 (7)
N20.0500 (11)0.0611 (12)0.0718 (13)0.0004 (9)0.0190 (10)0.0190 (10)
C10.0357 (9)0.0419 (11)0.0455 (11)0.0003 (8)0.0087 (8)0.0038 (8)
C20.0526 (13)0.0418 (12)0.0615 (14)0.0012 (10)0.0069 (11)0.0051 (10)
C30.0675 (17)0.0587 (17)0.0792 (18)0.0155 (13)0.0131 (14)0.0221 (14)
C40.0537 (15)0.095 (2)0.0673 (17)0.0160 (15)0.0061 (13)0.0243 (16)
C50.0410 (12)0.096 (2)0.0536 (14)0.0060 (13)0.0068 (10)0.0028 (13)
C60.0397 (10)0.0608 (14)0.0466 (11)0.0073 (9)0.0119 (9)0.0049 (10)
C70.0562 (13)0.0540 (13)0.0617 (14)0.0152 (11)0.0213 (11)0.0148 (11)
C80.0543 (13)0.0379 (11)0.0640 (14)0.0028 (9)0.0204 (11)0.0035 (10)
C90.0407 (10)0.0453 (11)0.0463 (11)0.0025 (9)0.0060 (9)0.0013 (9)
C100.0458 (12)0.0581 (14)0.0528 (13)0.0034 (10)0.0078 (10)0.0025 (11)
C110.0437 (11)0.0466 (13)0.0729 (16)0.0028 (10)0.0053 (11)0.0018 (11)
C120.0435 (11)0.0455 (11)0.0539 (12)0.0016 (9)0.0186 (9)0.0027 (9)
C130.0490 (12)0.0504 (12)0.0506 (12)0.0040 (10)0.0159 (10)0.0014 (9)
C140.0562 (13)0.0495 (13)0.0605 (14)0.0050 (10)0.0025 (11)0.0108 (10)
C150.0731 (18)0.089 (2)0.0645 (17)0.0021 (16)0.0043 (14)0.0148 (15)
C160.0726 (18)0.094 (2)0.0610 (16)0.0175 (17)0.0073 (13)0.0166 (15)
Geometric parameters (Å, º) top
S1—C161.699 (4)C5—H50.88 (4)
S1—C131.717 (2)C6—C71.465 (4)
O1—C71.207 (3)C7—C81.542 (4)
O2—C81.205 (3)C9—C101.510 (3)
O3—N21.422 (3)C9—H9A0.98 (3)
O3—C101.454 (3)C9—H9B0.96 (3)
N1—C81.367 (3)C10—C111.519 (3)
N1—C11.413 (3)C10—H100.85 (3)
N1—C91.453 (3)C11—C121.493 (3)
N2—C121.282 (3)C11—H11A1.02 (4)
C1—C21.379 (3)C11—H11B0.99 (3)
C1—C61.393 (3)C12—C131.453 (3)
C2—C31.387 (4)C13—C141.369 (3)
C2—H20.88 (3)C14—C151.411 (4)
C3—C41.376 (5)C14—H140.9300
C3—H30.89 (4)C15—C161.331 (5)
C4—C51.376 (5)C15—H150.9300
C4—H40.98 (3)C16—H160.9300
C5—C61.384 (4)
C16—S1—C1391.96 (14)C10—C9—H9A108.8 (14)
N2—O3—C10108.19 (17)N1—C9—H9B106.8 (16)
C8—N1—C1110.79 (18)C10—C9—H9B111.4 (15)
C8—N1—C9125.00 (19)H9A—C9—H9B107 (2)
C1—N1—C9124.21 (18)O3—C10—C9108.9 (2)
C12—N2—O3109.0 (2)O3—C10—C11104.84 (19)
C2—C1—C6121.5 (2)C9—C10—C11113.1 (2)
C2—C1—N1127.7 (2)O3—C10—H10102 (2)
C6—C1—N1110.8 (2)C9—C10—H10114 (2)
C1—C2—C3117.0 (3)C11—C10—H10113 (2)
C1—C2—H2123.7 (19)C12—C11—C10100.50 (19)
C3—C2—H2119.1 (19)C12—C11—H11A110 (2)
C4—C3—C2122.1 (3)C10—C11—H11A113 (2)
C4—C3—H3121 (2)C12—C11—H11B111.0 (18)
C2—C3—H3117 (2)C10—C11—H11B110.4 (18)
C5—C4—C3120.4 (3)H11A—C11—H11B112 (3)
C5—C4—H4122.0 (19)N2—C12—C13122.2 (2)
C3—C4—H4117.5 (19)N2—C12—C11114.2 (2)
C4—C5—C6118.7 (3)C13—C12—C11123.5 (2)
C4—C5—H5120 (2)C14—C13—C12126.3 (2)
C6—C5—H5121 (2)C14—C13—S1110.26 (19)
C5—C6—C1120.2 (2)C12—C13—S1123.45 (18)
C5—C6—C7132.8 (2)C13—C14—C15112.5 (3)
C1—C6—C7107.0 (2)C13—C14—H14123.7
O1—C7—C6130.5 (3)C15—C14—H14123.7
O1—C7—C8124.1 (3)C16—C15—C14113.0 (3)
C6—C7—C8105.47 (18)C16—C15—H15123.5
O2—C8—N1127.2 (2)C14—C15—H15123.5
O2—C8—C7126.9 (2)C15—C16—S1112.2 (2)
N1—C8—C7105.9 (2)C15—C16—H16123.9
N1—C9—C10112.35 (19)S1—C16—H16123.9
N1—C9—H9A110.3 (14)
C10—O3—N2—C1212.4 (3)O1—C7—C8—N1179.6 (2)
C8—N1—C1—C2176.5 (2)C6—C7—C8—N11.1 (2)
C9—N1—C1—C23.3 (3)C8—N1—C9—C1096.1 (3)
C8—N1—C1—C62.0 (2)C1—N1—C9—C1084.1 (3)
C9—N1—C1—C6178.19 (19)N2—O3—C10—C9103.2 (2)
C6—C1—C2—C30.2 (4)N2—O3—C10—C1118.1 (3)
N1—C1—C2—C3178.6 (2)N1—C9—C10—O371.4 (2)
C1—C2—C3—C41.2 (4)N1—C9—C10—C11172.41 (19)
C2—C3—C4—C51.7 (5)O3—C10—C11—C1216.3 (2)
C3—C4—C5—C60.7 (4)C9—C10—C11—C12102.3 (2)
C4—C5—C6—C10.6 (4)O3—N2—C12—C13177.69 (19)
C4—C5—C6—C7177.5 (3)O3—N2—C12—C110.9 (3)
C2—C1—C6—C51.1 (3)C10—C11—C12—N210.0 (3)
N1—C1—C6—C5179.7 (2)C10—C11—C12—C13171.4 (2)
C2—C1—C6—C7177.5 (2)N2—C12—C13—C14161.9 (2)
N1—C1—C6—C71.2 (2)C11—C12—C13—C1416.6 (4)
C5—C6—C7—O11.0 (5)N2—C12—C13—S116.9 (3)
C1—C6—C7—O1179.2 (3)C11—C12—C13—S1164.62 (19)
C5—C6—C7—C8178.3 (2)C16—S1—C13—C140.3 (2)
C1—C6—C7—C80.1 (2)C16—S1—C13—C12178.6 (2)
C1—N1—C8—O2177.7 (2)C12—C13—C14—C15177.5 (2)
C9—N1—C8—O22.1 (4)S1—C13—C14—C151.4 (3)
C1—N1—C8—C71.8 (2)C13—C14—C15—C162.1 (4)
C9—N1—C8—C7178.35 (18)C14—C15—C16—S11.9 (4)
O1—C7—C8—O20.9 (4)C13—S1—C16—C150.9 (3)
C6—C7—C8—O2178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.88 (3)2.60 (3)3.455 (3)162 (2)
C9—H9A···O2i0.98 (3)2.39 (3)3.297 (3)153.7 (19)
C16—H16···O1ii0.932.493.212 (4)134
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x3/2, y+1/2, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337–346.  Google Scholar
First citationBal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBouhfid, R., Moussaif, A., Joly, N., Massoui, M., Martin, P. & Essassi, E. M. (2006). ChemInform, 37: no. doi: 10.1002/chin. 200621121 (J. Maroc. Heterocycl. 5, 23–44).  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGürsoy, A. & Karalı, N. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds