organic compounds
7-Acetyl-8-(4-chlorophenyl)-3-ethylsulfanyl-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinoline-4-carbonitrile
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C22H23ClN2O2S, the chlorophenyl ring is inclined to the pyridine ring of the isoquinoline ring system by 79.78 (4)°. The cyclohexane ring adopts a flattened boat conformation. In the crystal, dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N interactions that also form inversion dimers.
Keywords: crystal structure; isoquinolines; hydrogen bonds; inversion dimers.
CCDC reference: 1537099
Structure description
It is well known that partially hydrogenated isoquinoline derivatives exhibit antifungal activity by inhibition of the enzymes in sterol biosynthesis (Krauss et al., 2014; Zhu et al., 2006). The influence of substitution of the aromatic rings of tetrahydroisoquinolines (THIQ) on their anti-fungal activities has also been reported (Bojarski et al., 2002). In the light of such findings and as part of our studies in this area, we report herein the synthesis and of the title compound.
In the title molecule (Fig. 1), the dihedral angle between the 4-chlorophenyl ring and the pyridine ring of the tetrahydroisoquinoline ring system is 79.78 (4)°. A puckering analysis of the C1–C6 ring yielded the parameters: Q = 0.521 (2) Å, θ = 52.8 (2)° and φ = 37.5 (2)° and the substituted cyclohexane ring can best be described as adopting a flattened boat conformation. In the crystal, O1 acts as a bifurcated acceptor, forming C5—H5⋯O1i and C14—H14⋯O1i inversion dimers, Table 1, that enclose R21(6) rings. Classical O1—H1⋯O2i hydrogen bonds strongly reinforce these dimers and generate R22(12) rings. These pairs of molecules are connected into zigzag chains along the c axis by inversion-related C18—H18⋯N2ii interactions, Figs. 2 and 3. These chains stack to form layers parallel to (110).
Synthesis and crystallization
A mixture of 7-acetyl-8-(4-chlorophenyl)-1,6-dimethyl-6-hydroxy-3-thioxo-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile (10 mmol), ethyl iodide (10 mmol) and sodium acetate trihydrate (11 mmol) in ethanol (30 ml) was heated under reflux for 1 h. The precipitate that formed after cooling was collected and recrystallized from ethanol in the form of colorless needles. Yield: 80%, m.p.: 450 K. IR: 3420 (OH), 2225 (CN), 1710 (CO) cm-1. 1H NMR (CDCl3): δ 6.8–7.3 (dd, 4H, Ar—H), 4.2–4.4 (d, 1H, CH at C-7), 2.8–3.2 (m, 5H: SCH2, CH at C-8 and CH2 of cyclohexanone ring), 1H, CH at C-7), 2.0 (s, 3H, COCH3), 1.8 (s, 3H, CH3 at C-1), 1.2–1.5 (m, 6H, CH3 at C-6 and CH3 of the ethylsulfanyl group).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1537099
https://doi.org/10.1107/S241431461700390X/sj4096sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700390X/sj4096Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461700390X/sj4096Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C22H23ClN2O2S | Z = 2 |
Mr = 414.93 | F(000) = 436 |
Triclinic, P1 | Dx = 1.302 Mg m−3 |
a = 9.4083 (3) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.5140 (3) Å | Cell parameters from 7163 reflections |
c = 12.7168 (4) Å | θ = 3.5–72.5° |
α = 86.863 (1)° | µ = 2.68 mm−1 |
β = 79.175 (1)° | T = 150 K |
γ = 71.222 (1)° | Needle, colourless |
V = 1058.50 (6) Å3 | 0.27 × 0.09 × 0.07 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3971 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 3653 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.5°, θmin = 3.5° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −10→11 |
Tmin = 0.71, Tmax = 0.84 | l = −15→15 |
8327 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.096 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.319P] where P = (Fo2 + 2Fc2)/3 |
3971 reflections | (Δ/σ)max = 0.001 |
345 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.09551 (4) | 0.23534 (4) | 0.31423 (3) | 0.03778 (13) | |
S1 | 0.14426 (4) | 0.89211 (5) | 0.06323 (3) | 0.03559 (13) | |
O1 | 0.48196 (11) | 1.16451 (11) | 0.38291 (8) | 0.0247 (2) | |
H1 | 0.425 (3) | 1.108 (3) | 0.4007 (18) | 0.052 (6)* | |
O2 | 0.72775 (12) | 0.97289 (12) | 0.49818 (8) | 0.0281 (2) | |
N1 | 0.30224 (13) | 0.76948 (14) | 0.21841 (10) | 0.0254 (3) | |
N2 | 0.27102 (19) | 1.20457 (16) | 0.00856 (12) | 0.0403 (3) | |
C1 | 0.45908 (15) | 0.97740 (14) | 0.20289 (10) | 0.0203 (3) | |
C2 | 0.53508 (17) | 1.09605 (15) | 0.19497 (11) | 0.0234 (3) | |
H2A | 0.615 (2) | 1.0794 (19) | 0.1321 (14) | 0.026 (4)* | |
H2B | 0.458 (2) | 1.196 (2) | 0.1858 (14) | 0.028 (4)* | |
C3 | 0.60142 (15) | 1.10524 (15) | 0.29429 (11) | 0.0216 (3) | |
C4 | 0.70289 (15) | 0.94682 (15) | 0.31644 (11) | 0.0204 (3) | |
H4 | 0.780 (2) | 0.9114 (18) | 0.2514 (14) | 0.024 (4)* | |
C5 | 0.61087 (15) | 0.83658 (14) | 0.34326 (10) | 0.0194 (3) | |
H5 | 0.5601 (19) | 0.8533 (18) | 0.4182 (13) | 0.021 (4)* | |
C6 | 0.49137 (15) | 0.85821 (14) | 0.27322 (10) | 0.0195 (3) | |
C7 | 0.40342 (15) | 0.76146 (15) | 0.28225 (11) | 0.0224 (3) | |
C8 | 0.27810 (15) | 0.87785 (16) | 0.14645 (11) | 0.0246 (3) | |
C9 | 0.34990 (15) | 0.98684 (15) | 0.13912 (11) | 0.0227 (3) | |
C10 | 0.69246 (18) | 1.21369 (17) | 0.27516 (13) | 0.0289 (3) | |
H10A | 0.725 (2) | 1.230 (2) | 0.3415 (15) | 0.032 (5)* | |
H10B | 0.783 (2) | 1.180 (2) | 0.2178 (16) | 0.038 (5)* | |
H10C | 0.628 (2) | 1.311 (2) | 0.2543 (16) | 0.038 (5)* | |
C11 | 0.79209 (16) | 0.94474 (15) | 0.40579 (11) | 0.0227 (3) | |
C12 | 0.96168 (18) | 0.9034 (2) | 0.37436 (15) | 0.0350 (4) | |
H12A | 1.006 (3) | 0.806 (3) | 0.3426 (19) | 0.054 (6)* | |
H12B | 1.006 (3) | 0.907 (3) | 0.4372 (19) | 0.055 (6)* | |
H12C | 0.988 (3) | 0.967 (2) | 0.3204 (19) | 0.048 (6)* | |
C13 | 0.72613 (14) | 0.68024 (14) | 0.33571 (11) | 0.0191 (3) | |
C14 | 0.76798 (16) | 0.60575 (15) | 0.42788 (11) | 0.0235 (3) | |
H14 | 0.715 (2) | 0.649 (2) | 0.4969 (16) | 0.036 (5)* | |
C15 | 0.88127 (16) | 0.46802 (16) | 0.42125 (12) | 0.0249 (3) | |
H15 | 0.911 (2) | 0.416 (2) | 0.4836 (15) | 0.032 (5)* | |
C16 | 0.95203 (15) | 0.40606 (15) | 0.32158 (12) | 0.0245 (3) | |
C17 | 0.91100 (16) | 0.47659 (16) | 0.22861 (12) | 0.0248 (3) | |
H17 | 0.958 (2) | 0.430 (2) | 0.1584 (17) | 0.043 (5)* | |
C18 | 0.79745 (16) | 0.61425 (15) | 0.23609 (11) | 0.0224 (3) | |
H18 | 0.770 (2) | 0.667 (2) | 0.1709 (15) | 0.030 (4)* | |
C19 | 0.41091 (18) | 0.64464 (18) | 0.36753 (14) | 0.0309 (3) | |
H19A | 0.414 (3) | 0.679 (2) | 0.4372 (19) | 0.050 (6)* | |
H19B | 0.506 (3) | 0.560 (3) | 0.3502 (18) | 0.051 (6)* | |
H19C | 0.326 (3) | 0.612 (2) | 0.3722 (17) | 0.049 (6)* | |
C20 | 0.30823 (17) | 1.10873 (16) | 0.06672 (11) | 0.0274 (3) | |
C21 | 0.1198 (2) | 0.7110 (3) | 0.07781 (16) | 0.0475 (5) | |
H21A | 0.029 (3) | 0.723 (3) | 0.048 (2) | 0.065 (7)* | |
H21B | 0.094 (3) | 0.694 (3) | 0.158 (2) | 0.054 (6)* | |
C22 | 0.2547 (4) | 0.5899 (3) | 0.0220 (2) | 0.0628 (6) | |
H22A | 0.236 (3) | 0.493 (3) | 0.034 (2) | 0.082 (9)* | |
H22B | 0.284 (3) | 0.607 (3) | −0.058 (2) | 0.076 (8)* | |
H22C | 0.350 (3) | 0.578 (3) | 0.051 (2) | 0.068 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0316 (2) | 0.02441 (19) | 0.0462 (2) | 0.00513 (14) | −0.00492 (17) | 0.00079 (16) |
S1 | 0.0288 (2) | 0.0465 (2) | 0.0356 (2) | −0.01295 (17) | −0.01517 (17) | 0.00370 (18) |
O1 | 0.0250 (5) | 0.0217 (5) | 0.0239 (5) | −0.0043 (4) | 0.0005 (4) | −0.0053 (4) |
O2 | 0.0294 (5) | 0.0314 (5) | 0.0234 (5) | −0.0092 (4) | −0.0051 (4) | −0.0018 (4) |
N1 | 0.0202 (6) | 0.0273 (6) | 0.0290 (6) | −0.0079 (5) | −0.0046 (5) | 0.0008 (5) |
N2 | 0.0543 (9) | 0.0340 (7) | 0.0313 (7) | −0.0082 (7) | −0.0166 (7) | 0.0053 (6) |
C1 | 0.0203 (6) | 0.0184 (6) | 0.0187 (6) | −0.0027 (5) | −0.0007 (5) | −0.0024 (5) |
C2 | 0.0300 (7) | 0.0186 (6) | 0.0213 (6) | −0.0075 (6) | −0.0044 (6) | 0.0020 (5) |
C3 | 0.0236 (6) | 0.0185 (6) | 0.0206 (6) | −0.0058 (5) | −0.0004 (5) | −0.0012 (5) |
C4 | 0.0202 (6) | 0.0196 (6) | 0.0202 (6) | −0.0060 (5) | −0.0012 (5) | −0.0014 (5) |
C5 | 0.0196 (6) | 0.0176 (6) | 0.0198 (6) | −0.0046 (5) | −0.0027 (5) | −0.0002 (5) |
C6 | 0.0181 (6) | 0.0181 (6) | 0.0195 (6) | −0.0027 (5) | −0.0019 (5) | −0.0013 (5) |
C7 | 0.0185 (6) | 0.0223 (6) | 0.0243 (6) | −0.0049 (5) | −0.0016 (5) | −0.0004 (5) |
C8 | 0.0182 (6) | 0.0283 (7) | 0.0246 (7) | −0.0037 (5) | −0.0030 (5) | −0.0022 (6) |
C9 | 0.0226 (6) | 0.0206 (6) | 0.0207 (6) | −0.0017 (5) | −0.0029 (5) | −0.0008 (5) |
C10 | 0.0333 (8) | 0.0234 (7) | 0.0328 (8) | −0.0134 (6) | −0.0046 (7) | 0.0007 (6) |
C11 | 0.0236 (7) | 0.0191 (6) | 0.0257 (7) | −0.0072 (5) | −0.0042 (6) | −0.0006 (5) |
C12 | 0.0235 (7) | 0.0447 (10) | 0.0369 (9) | −0.0100 (7) | −0.0053 (7) | −0.0047 (8) |
C13 | 0.0178 (6) | 0.0181 (6) | 0.0219 (6) | −0.0060 (5) | −0.0040 (5) | 0.0003 (5) |
C14 | 0.0258 (7) | 0.0218 (6) | 0.0215 (7) | −0.0053 (5) | −0.0047 (6) | 0.0001 (5) |
C15 | 0.0257 (7) | 0.0230 (7) | 0.0254 (7) | −0.0056 (5) | −0.0082 (6) | 0.0043 (6) |
C16 | 0.0206 (6) | 0.0190 (6) | 0.0329 (7) | −0.0050 (5) | −0.0044 (6) | 0.0003 (6) |
C17 | 0.0257 (7) | 0.0224 (7) | 0.0241 (7) | −0.0065 (5) | 0.0001 (6) | −0.0024 (6) |
C18 | 0.0247 (7) | 0.0213 (6) | 0.0210 (6) | −0.0071 (5) | −0.0039 (5) | 0.0004 (5) |
C19 | 0.0289 (8) | 0.0312 (8) | 0.0369 (8) | −0.0154 (7) | −0.0088 (7) | 0.0104 (7) |
C20 | 0.0306 (7) | 0.0264 (7) | 0.0228 (7) | −0.0041 (6) | −0.0076 (6) | −0.0004 (6) |
C21 | 0.0533 (11) | 0.0673 (13) | 0.0416 (10) | −0.0419 (10) | −0.0179 (9) | 0.0072 (9) |
C22 | 0.100 (2) | 0.0483 (12) | 0.0535 (13) | −0.0358 (13) | −0.0245 (13) | −0.0011 (10) |
Cl1—C16 | 1.7398 (14) | C10—H10A | 0.987 (19) |
S1—C8 | 1.7603 (14) | C10—H10B | 0.99 (2) |
S1—C21 | 1.805 (2) | C10—H10C | 0.98 (2) |
O1—C3 | 1.4273 (16) | C11—C12 | 1.495 (2) |
O1—H1 | 0.87 (2) | C12—H12A | 0.96 (2) |
O2—C11 | 1.2171 (17) | C12—H12B | 0.97 (2) |
N1—C8 | 1.3327 (19) | C12—H12C | 0.94 (2) |
N1—C7 | 1.3445 (19) | C13—C14 | 1.3906 (19) |
N2—C20 | 1.148 (2) | C13—C18 | 1.3950 (19) |
C1—C6 | 1.3955 (19) | C14—C15 | 1.393 (2) |
C1—C9 | 1.402 (2) | C14—H14 | 0.96 (2) |
C1—C2 | 1.5086 (18) | C15—C16 | 1.382 (2) |
C2—C3 | 1.5283 (19) | C15—H15 | 0.950 (19) |
C2—H2A | 0.968 (18) | C16—C17 | 1.384 (2) |
C2—H2B | 1.014 (18) | C17—C18 | 1.393 (2) |
C3—C10 | 1.5234 (19) | C17—H17 | 0.98 (2) |
C3—C4 | 1.5461 (18) | C18—H18 | 0.979 (19) |
C4—C11 | 1.5300 (19) | C19—H19A | 0.97 (2) |
C4—C5 | 1.5493 (17) | C19—H19B | 0.99 (2) |
C4—H4 | 0.987 (18) | C19—H19C | 0.94 (2) |
C5—C6 | 1.5187 (18) | C21—C22 | 1.501 (4) |
C5—C13 | 1.5283 (17) | C21—H21A | 0.97 (3) |
C5—H5 | 0.979 (17) | C21—H21B | 1.01 (2) |
C6—C7 | 1.4101 (19) | C22—H22A | 1.00 (3) |
C7—C19 | 1.504 (2) | C22—H22B | 1.02 (3) |
C8—C9 | 1.399 (2) | C22—H22C | 1.00 (3) |
C9—C20 | 1.440 (2) | ||
C8—S1—C21 | 101.82 (8) | H10B—C10—H10C | 107.6 (16) |
C3—O1—H1 | 111.8 (15) | O2—C11—C12 | 121.86 (13) |
C8—N1—C7 | 118.86 (12) | O2—C11—C4 | 121.37 (12) |
C6—C1—C9 | 118.03 (12) | C12—C11—C4 | 116.76 (12) |
C6—C1—C2 | 122.39 (12) | C11—C12—H12A | 111.8 (14) |
C9—C1—C2 | 119.57 (12) | C11—C12—H12B | 109.4 (14) |
C1—C2—C3 | 112.98 (11) | H12A—C12—H12B | 109.4 (19) |
C1—C2—H2A | 110.1 (10) | C11—C12—H12C | 110.3 (14) |
C3—C2—H2A | 109.7 (10) | H12A—C12—H12C | 104.4 (19) |
C1—C2—H2B | 109.4 (10) | H12B—C12—H12C | 111.5 (19) |
C3—C2—H2B | 107.6 (10) | C14—C13—C18 | 119.17 (12) |
H2A—C2—H2B | 106.8 (14) | C14—C13—C5 | 120.31 (12) |
O1—C3—C10 | 105.58 (11) | C18—C13—C5 | 120.41 (12) |
O1—C3—C2 | 110.47 (11) | C13—C14—C15 | 120.67 (13) |
C10—C3—C2 | 109.94 (11) | C13—C14—H14 | 119.4 (11) |
O1—C3—C4 | 112.05 (11) | C15—C14—H14 | 119.9 (11) |
C10—C3—C4 | 111.59 (12) | C16—C15—C14 | 119.08 (13) |
C2—C3—C4 | 107.25 (11) | C16—C15—H15 | 119.4 (11) |
C11—C4—C3 | 112.15 (11) | C14—C15—H15 | 121.5 (11) |
C11—C4—C5 | 109.54 (11) | C15—C16—C17 | 121.49 (13) |
C3—C4—C5 | 112.56 (11) | C15—C16—Cl1 | 118.67 (11) |
C11—C4—H4 | 105.9 (10) | C17—C16—Cl1 | 119.85 (11) |
C3—C4—H4 | 107.8 (10) | C16—C17—C18 | 118.99 (13) |
C5—C4—H4 | 108.6 (10) | C16—C17—H17 | 121.1 (12) |
C6—C5—C13 | 113.33 (10) | C18—C17—H17 | 119.9 (12) |
C6—C5—C4 | 112.58 (11) | C17—C18—C13 | 120.58 (13) |
C13—C5—C4 | 107.19 (10) | C17—C18—H18 | 119.9 (11) |
C6—C5—H5 | 109.1 (10) | C13—C18—H18 | 119.5 (10) |
C13—C5—H5 | 107.0 (9) | C7—C19—H19A | 113.7 (13) |
C4—C5—H5 | 107.3 (9) | C7—C19—H19B | 110.8 (13) |
C1—C6—C7 | 117.95 (12) | H19A—C19—H19B | 104.6 (18) |
C1—C6—C5 | 121.75 (12) | C7—C19—H19C | 108.6 (13) |
C7—C6—C5 | 120.20 (12) | H19A—C19—H19C | 109.5 (19) |
N1—C7—C6 | 123.02 (13) | H19B—C19—H19C | 109.6 (18) |
N1—C7—C19 | 114.57 (12) | N2—C20—C9 | 177.77 (17) |
C6—C7—C19 | 122.37 (13) | C22—C21—S1 | 113.37 (15) |
N1—C8—C9 | 121.71 (13) | C22—C21—H21A | 111.5 (15) |
N1—C8—S1 | 119.68 (11) | S1—C21—H21A | 103.7 (15) |
C9—C8—S1 | 118.50 (11) | C22—C21—H21B | 113.4 (13) |
C8—C9—C1 | 119.97 (13) | S1—C21—H21B | 106.3 (13) |
C8—C9—C20 | 119.01 (13) | H21A—C21—H21B | 108 (2) |
C1—C9—C20 | 121.01 (13) | C21—C22—H22A | 109.8 (17) |
C3—C10—H10A | 110.9 (11) | C21—C22—H22B | 114.1 (16) |
C3—C10—H10B | 112.5 (11) | H22A—C22—H22B | 111 (2) |
H10A—C10—H10B | 109.2 (16) | C21—C22—H22C | 112.5 (15) |
C3—C10—H10C | 110.1 (12) | H22A—C22—H22C | 105 (2) |
H10A—C10—H10C | 106.2 (16) | H22B—C22—H22C | 104 (2) |
C6—C1—C2—C3 | −20.84 (18) | C7—N1—C8—S1 | −179.14 (10) |
C9—C1—C2—C3 | 158.07 (12) | C21—S1—C8—N1 | −16.72 (14) |
C1—C2—C3—O1 | −70.69 (14) | C21—S1—C8—C9 | 166.99 (12) |
C1—C2—C3—C10 | 173.18 (12) | N1—C8—C9—C1 | 4.9 (2) |
C1—C2—C3—C4 | 51.68 (15) | S1—C8—C9—C1 | −178.87 (10) |
O1—C3—C4—C11 | −65.87 (14) | N1—C8—C9—C20 | −174.18 (13) |
C10—C3—C4—C11 | 52.30 (15) | S1—C8—C9—C20 | 2.02 (17) |
C2—C3—C4—C11 | 172.75 (11) | C6—C1—C9—C8 | −0.62 (19) |
O1—C3—C4—C5 | 58.20 (14) | C2—C1—C9—C8 | −179.58 (12) |
C10—C3—C4—C5 | 176.36 (11) | C6—C1—C9—C20 | 178.46 (12) |
C2—C3—C4—C5 | −63.19 (14) | C2—C1—C9—C20 | −0.49 (19) |
C11—C4—C5—C6 | 166.36 (10) | C3—C4—C11—O2 | 67.98 (16) |
C3—C4—C5—C6 | 40.86 (15) | C5—C4—C11—O2 | −57.75 (16) |
C11—C4—C5—C13 | −68.35 (13) | C3—C4—C11—C12 | −113.30 (14) |
C3—C4—C5—C13 | 166.15 (11) | C5—C4—C11—C12 | 120.97 (14) |
C9—C1—C6—C7 | −5.11 (18) | C6—C5—C13—C14 | −135.46 (13) |
C2—C1—C6—C7 | 173.82 (12) | C4—C5—C13—C14 | 99.70 (14) |
C9—C1—C6—C5 | 178.36 (12) | C6—C5—C13—C18 | 48.46 (16) |
C2—C1—C6—C5 | −2.72 (19) | C4—C5—C13—C18 | −76.37 (15) |
C13—C5—C6—C1 | −129.28 (13) | C18—C13—C14—C15 | 1.0 (2) |
C4—C5—C6—C1 | −7.41 (17) | C5—C13—C14—C15 | −175.14 (12) |
C13—C5—C6—C7 | 54.26 (16) | C13—C14—C15—C16 | 0.1 (2) |
C4—C5—C6—C7 | 176.13 (11) | C14—C15—C16—C17 | −1.1 (2) |
C8—N1—C7—C6 | −3.2 (2) | C14—C15—C16—Cl1 | 178.98 (11) |
C8—N1—C7—C19 | 174.33 (13) | C15—C16—C17—C18 | 1.1 (2) |
C1—C6—C7—N1 | 7.4 (2) | Cl1—C16—C17—C18 | −179.05 (10) |
C5—C6—C7—N1 | −176.06 (12) | C16—C17—C18—C13 | 0.0 (2) |
C1—C6—C7—C19 | −170.04 (13) | C14—C13—C18—C17 | −1.0 (2) |
C5—C6—C7—C19 | 6.6 (2) | C5—C13—C18—C17 | 175.07 (12) |
C7—N1—C8—C9 | −3.0 (2) | C8—S1—C21—C22 | −72.41 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.87 (2) | 2.06 (2) | 2.8655 (15) | 155 (2) |
C5—H5···O1i | 0.98 (2) | 2.49 (2) | 3.4276 (16) | 160 (1) |
C14—H14···O1i | 0.97 (2) | 2.46 (2) | 3.3523 (17) | 154 (2) |
C18—H18···N2ii | 0.98 (2) | 2.56 (2) | 3.538 (2) | 174 (2) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Bojarski, A. J., Mokrosz, M. J., Minol, S. C., Kozioł, A., Wesołowska, A., Tatarczyńska, E., Kłodzińska, A. & Chojnacka-Wójcik, E. (2002). Bioorg. Med. Chem. 10, 87–95. CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Krauss, J., Müller, C., Kiessling, J., Richter, S., Staudacher, V. & Bracher, F. (2014). Arch. Pharm. Chem. Life Sci. 347, 283–290. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhu, J., Lu, J., Zhou, Y., Li, Y., Cheng, J. & Zheng, C. (2006). Bioorg. Med. Chem. Lett. 16, 5285–5289. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.