organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Acetyl-8-(4-chloro­phen­yl)-3-ethyl­sulfanyl-6-hy­droxy-1,6-di­methyl-5,6,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 8 March 2017; accepted 10 March 2017; online 21 March 2017)

In the title compound, C22H23ClN2O2S, the chloro­phenyl ring is inclined to the pyridine ring of the iso­quinoline ring system by 79.78 (4)°. The cyclo­hexane ring adopts a flattened boat conformation. In the crystal, dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N inter­actions that also form inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

It is well known that partially hydrogenated iso­quinoline derivatives exhibit anti­fungal activity by inhibition of the enzymes in sterol biosynthesis (Krauss et al., 2014[Krauss, J., Müller, C., Kiessling, J., Richter, S., Staudacher, V. & Bracher, F. (2014). Arch. Pharm. Chem. Life Sci. 347, 283-290.]; Zhu et al., 2006[Zhu, J., Lu, J., Zhou, Y., Li, Y., Cheng, J. & Zheng, C. (2006). Bioorg. Med. Chem. Lett. 16, 5285-5289.]). The influence of substitution of the aromatic rings of tetra­hydro­iso­quinolines (THIQ) on their anti-fungal activities has also been reported (Bojarski et al., 2002[Bojarski, A. J., Mokrosz, M. J., Minol, S. C., Kozioł, A., Wesołowska, A., Tatarczyńska, E., Kłodzińska, A. & Chojnacka-Wójcik, E. (2002). Bioorg. Med. Chem. 10, 87-95.]). In the light of such findings and as part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the title mol­ecule (Fig. 1[link]), the dihedral angle between the 4-chloro­phenyl ring and the pyridine ring of the tetra­hydro­iso­quinoline ring system is 79.78 (4)°. A puckering analysis of the C1–C6 ring yielded the parameters: Q = 0.521 (2) Å, θ = 52.8 (2)° and φ = 37.5 (2)° and the substituted cyclo­hexane ring can best be described as adopting a flattened boat conformation. In the crystal, O1 acts as a bifurcated acceptor, forming C5—H5⋯O1i and C14—H14⋯O1i inversion dimers, Table 1[link], that enclose R21(6) rings. Classical O1—H1⋯O2i hydrogen bonds strongly reinforce these dimers and generate R22(12) rings. These pairs of mol­ecules are connected into zigzag chains along the c axis by inversion-related C18—H18⋯N2ii inter­actions, Figs. 2[link] and 3[link]. These chains stack to form layers parallel to (110).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (2) 2.06 (2) 2.8655 (15) 155 (2)
C5—H5⋯O1i 0.98 (2) 2.49 (2) 3.4276 (16) 160 (1)
C14—H14⋯O1i 0.97 (2) 2.46 (2) 3.3523 (17) 154 (2)
C18—H18⋯N2ii 0.98 (2) 2.56 (2) 3.538 (2) 174 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z.
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions (O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively as red, black and purple dashed lines). [Symmetry codes: (i) 1 − x, 2 − y, −z; (ii) 1 − x, 2 − y, 1 − z].
[Figure 3]
Figure 3
Packing viewed along the b axis (color code for hydrogen bonds is given in Fig. 2[link]).

Synthesis and crystallization

A mixture of 7-acetyl-8-(4-chloro­phen­yl)-1,6-dimethyl-6-hydroxy-3-thioxo-2,3,5,6,7,8-hexa­hydro­iso­quinoline-4-carbonitrile (10 mmol), ethyl iodide (10 mmol) and sodium acetate trihydrate (11 mmol) in ethanol (30 ml) was heated under reflux for 1 h. The precipitate that formed after cooling was collected and recrystallized from ethanol in the form of colorless needles. Yield: 80%, m.p.: 450 K. IR: 3420 (OH), 2225 (CN), 1710 (CO) cm-1. 1H NMR (CDCl3): δ 6.8–7.3 (dd, 4H, Ar—H), 4.2–4.4 (d, 1H, CH at C-7), 2.8–3.2 (m, 5H: SCH2, CH at C-8 and CH2 of cyclo­hexa­none ring), 1H, CH at C-7), 2.0 (s, 3H, COCH3), 1.8 (s, 3H, CH3 at C-1), 1.2–1.5 (m, 6H, CH3 at C-6 and CH3 of the ethyl­sulfanyl group).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H23ClN2O2S
Mr 414.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.4083 (3), 9.5140 (3), 12.7168 (4)
α, β, γ (°) 86.863 (1), 79.175 (1), 71.222 (1)
V3) 1058.50 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.68
Crystal size (mm) 0.27 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.71, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 8327, 3971, 3653
Rint 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections 3971
No. of parameters 345
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

7-Acetyl-8-(4-chlorophenyl)-3-ethylsulfanyl-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinoline-4-carbonitrile top
Crystal data top
C22H23ClN2O2SZ = 2
Mr = 414.93F(000) = 436
Triclinic, P1Dx = 1.302 Mg m3
a = 9.4083 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.5140 (3) ÅCell parameters from 7163 reflections
c = 12.7168 (4) Åθ = 3.5–72.5°
α = 86.863 (1)°µ = 2.68 mm1
β = 79.175 (1)°T = 150 K
γ = 71.222 (1)°Needle, colourless
V = 1058.50 (6) Å30.27 × 0.09 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3971 independent reflections
Radiation source: INCOATEC IµS micro–focus source3653 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1011
Tmin = 0.71, Tmax = 0.84l = 1515
8327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.096All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.319P]
where P = (Fo2 + 2Fc2)/3
3971 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.09551 (4)0.23534 (4)0.31423 (3)0.03778 (13)
S10.14426 (4)0.89211 (5)0.06323 (3)0.03559 (13)
O10.48196 (11)1.16451 (11)0.38291 (8)0.0247 (2)
H10.425 (3)1.108 (3)0.4007 (18)0.052 (6)*
O20.72775 (12)0.97289 (12)0.49818 (8)0.0281 (2)
N10.30224 (13)0.76948 (14)0.21841 (10)0.0254 (3)
N20.27102 (19)1.20457 (16)0.00856 (12)0.0403 (3)
C10.45908 (15)0.97740 (14)0.20289 (10)0.0203 (3)
C20.53508 (17)1.09605 (15)0.19497 (11)0.0234 (3)
H2A0.615 (2)1.0794 (19)0.1321 (14)0.026 (4)*
H2B0.458 (2)1.196 (2)0.1858 (14)0.028 (4)*
C30.60142 (15)1.10524 (15)0.29429 (11)0.0216 (3)
C40.70289 (15)0.94682 (15)0.31644 (11)0.0204 (3)
H40.780 (2)0.9114 (18)0.2514 (14)0.024 (4)*
C50.61087 (15)0.83658 (14)0.34326 (10)0.0194 (3)
H50.5601 (19)0.8533 (18)0.4182 (13)0.021 (4)*
C60.49137 (15)0.85821 (14)0.27322 (10)0.0195 (3)
C70.40342 (15)0.76146 (15)0.28225 (11)0.0224 (3)
C80.27810 (15)0.87785 (16)0.14645 (11)0.0246 (3)
C90.34990 (15)0.98684 (15)0.13912 (11)0.0227 (3)
C100.69246 (18)1.21369 (17)0.27516 (13)0.0289 (3)
H10A0.725 (2)1.230 (2)0.3415 (15)0.032 (5)*
H10B0.783 (2)1.180 (2)0.2178 (16)0.038 (5)*
H10C0.628 (2)1.311 (2)0.2543 (16)0.038 (5)*
C110.79209 (16)0.94474 (15)0.40579 (11)0.0227 (3)
C120.96168 (18)0.9034 (2)0.37436 (15)0.0350 (4)
H12A1.006 (3)0.806 (3)0.3426 (19)0.054 (6)*
H12B1.006 (3)0.907 (3)0.4372 (19)0.055 (6)*
H12C0.988 (3)0.967 (2)0.3204 (19)0.048 (6)*
C130.72613 (14)0.68024 (14)0.33571 (11)0.0191 (3)
C140.76798 (16)0.60575 (15)0.42788 (11)0.0235 (3)
H140.715 (2)0.649 (2)0.4969 (16)0.036 (5)*
C150.88127 (16)0.46802 (16)0.42125 (12)0.0249 (3)
H150.911 (2)0.416 (2)0.4836 (15)0.032 (5)*
C160.95203 (15)0.40606 (15)0.32158 (12)0.0245 (3)
C170.91100 (16)0.47659 (16)0.22861 (12)0.0248 (3)
H170.958 (2)0.430 (2)0.1584 (17)0.043 (5)*
C180.79745 (16)0.61425 (15)0.23609 (11)0.0224 (3)
H180.770 (2)0.667 (2)0.1709 (15)0.030 (4)*
C190.41091 (18)0.64464 (18)0.36753 (14)0.0309 (3)
H19A0.414 (3)0.679 (2)0.4372 (19)0.050 (6)*
H19B0.506 (3)0.560 (3)0.3502 (18)0.051 (6)*
H19C0.326 (3)0.612 (2)0.3722 (17)0.049 (6)*
C200.30823 (17)1.10873 (16)0.06672 (11)0.0274 (3)
C210.1198 (2)0.7110 (3)0.07781 (16)0.0475 (5)
H21A0.029 (3)0.723 (3)0.048 (2)0.065 (7)*
H21B0.094 (3)0.694 (3)0.158 (2)0.054 (6)*
C220.2547 (4)0.5899 (3)0.0220 (2)0.0628 (6)
H22A0.236 (3)0.493 (3)0.034 (2)0.082 (9)*
H22B0.284 (3)0.607 (3)0.058 (2)0.076 (8)*
H22C0.350 (3)0.578 (3)0.051 (2)0.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0316 (2)0.02441 (19)0.0462 (2)0.00513 (14)0.00492 (17)0.00079 (16)
S10.0288 (2)0.0465 (2)0.0356 (2)0.01295 (17)0.01517 (17)0.00370 (18)
O10.0250 (5)0.0217 (5)0.0239 (5)0.0043 (4)0.0005 (4)0.0053 (4)
O20.0294 (5)0.0314 (5)0.0234 (5)0.0092 (4)0.0051 (4)0.0018 (4)
N10.0202 (6)0.0273 (6)0.0290 (6)0.0079 (5)0.0046 (5)0.0008 (5)
N20.0543 (9)0.0340 (7)0.0313 (7)0.0082 (7)0.0166 (7)0.0053 (6)
C10.0203 (6)0.0184 (6)0.0187 (6)0.0027 (5)0.0007 (5)0.0024 (5)
C20.0300 (7)0.0186 (6)0.0213 (6)0.0075 (6)0.0044 (6)0.0020 (5)
C30.0236 (6)0.0185 (6)0.0206 (6)0.0058 (5)0.0004 (5)0.0012 (5)
C40.0202 (6)0.0196 (6)0.0202 (6)0.0060 (5)0.0012 (5)0.0014 (5)
C50.0196 (6)0.0176 (6)0.0198 (6)0.0046 (5)0.0027 (5)0.0002 (5)
C60.0181 (6)0.0181 (6)0.0195 (6)0.0027 (5)0.0019 (5)0.0013 (5)
C70.0185 (6)0.0223 (6)0.0243 (6)0.0049 (5)0.0016 (5)0.0004 (5)
C80.0182 (6)0.0283 (7)0.0246 (7)0.0037 (5)0.0030 (5)0.0022 (6)
C90.0226 (6)0.0206 (6)0.0207 (6)0.0017 (5)0.0029 (5)0.0008 (5)
C100.0333 (8)0.0234 (7)0.0328 (8)0.0134 (6)0.0046 (7)0.0007 (6)
C110.0236 (7)0.0191 (6)0.0257 (7)0.0072 (5)0.0042 (6)0.0006 (5)
C120.0235 (7)0.0447 (10)0.0369 (9)0.0100 (7)0.0053 (7)0.0047 (8)
C130.0178 (6)0.0181 (6)0.0219 (6)0.0060 (5)0.0040 (5)0.0003 (5)
C140.0258 (7)0.0218 (6)0.0215 (7)0.0053 (5)0.0047 (6)0.0001 (5)
C150.0257 (7)0.0230 (7)0.0254 (7)0.0056 (5)0.0082 (6)0.0043 (6)
C160.0206 (6)0.0190 (6)0.0329 (7)0.0050 (5)0.0044 (6)0.0003 (6)
C170.0257 (7)0.0224 (7)0.0241 (7)0.0065 (5)0.0001 (6)0.0024 (6)
C180.0247 (7)0.0213 (6)0.0210 (6)0.0071 (5)0.0039 (5)0.0004 (5)
C190.0289 (8)0.0312 (8)0.0369 (8)0.0154 (7)0.0088 (7)0.0104 (7)
C200.0306 (7)0.0264 (7)0.0228 (7)0.0041 (6)0.0076 (6)0.0004 (6)
C210.0533 (11)0.0673 (13)0.0416 (10)0.0419 (10)0.0179 (9)0.0072 (9)
C220.100 (2)0.0483 (12)0.0535 (13)0.0358 (13)0.0245 (13)0.0011 (10)
Geometric parameters (Å, º) top
Cl1—C161.7398 (14)C10—H10A0.987 (19)
S1—C81.7603 (14)C10—H10B0.99 (2)
S1—C211.805 (2)C10—H10C0.98 (2)
O1—C31.4273 (16)C11—C121.495 (2)
O1—H10.87 (2)C12—H12A0.96 (2)
O2—C111.2171 (17)C12—H12B0.97 (2)
N1—C81.3327 (19)C12—H12C0.94 (2)
N1—C71.3445 (19)C13—C141.3906 (19)
N2—C201.148 (2)C13—C181.3950 (19)
C1—C61.3955 (19)C14—C151.393 (2)
C1—C91.402 (2)C14—H140.96 (2)
C1—C21.5086 (18)C15—C161.382 (2)
C2—C31.5283 (19)C15—H150.950 (19)
C2—H2A0.968 (18)C16—C171.384 (2)
C2—H2B1.014 (18)C17—C181.393 (2)
C3—C101.5234 (19)C17—H170.98 (2)
C3—C41.5461 (18)C18—H180.979 (19)
C4—C111.5300 (19)C19—H19A0.97 (2)
C4—C51.5493 (17)C19—H19B0.99 (2)
C4—H40.987 (18)C19—H19C0.94 (2)
C5—C61.5187 (18)C21—C221.501 (4)
C5—C131.5283 (17)C21—H21A0.97 (3)
C5—H50.979 (17)C21—H21B1.01 (2)
C6—C71.4101 (19)C22—H22A1.00 (3)
C7—C191.504 (2)C22—H22B1.02 (3)
C8—C91.399 (2)C22—H22C1.00 (3)
C9—C201.440 (2)
C8—S1—C21101.82 (8)H10B—C10—H10C107.6 (16)
C3—O1—H1111.8 (15)O2—C11—C12121.86 (13)
C8—N1—C7118.86 (12)O2—C11—C4121.37 (12)
C6—C1—C9118.03 (12)C12—C11—C4116.76 (12)
C6—C1—C2122.39 (12)C11—C12—H12A111.8 (14)
C9—C1—C2119.57 (12)C11—C12—H12B109.4 (14)
C1—C2—C3112.98 (11)H12A—C12—H12B109.4 (19)
C1—C2—H2A110.1 (10)C11—C12—H12C110.3 (14)
C3—C2—H2A109.7 (10)H12A—C12—H12C104.4 (19)
C1—C2—H2B109.4 (10)H12B—C12—H12C111.5 (19)
C3—C2—H2B107.6 (10)C14—C13—C18119.17 (12)
H2A—C2—H2B106.8 (14)C14—C13—C5120.31 (12)
O1—C3—C10105.58 (11)C18—C13—C5120.41 (12)
O1—C3—C2110.47 (11)C13—C14—C15120.67 (13)
C10—C3—C2109.94 (11)C13—C14—H14119.4 (11)
O1—C3—C4112.05 (11)C15—C14—H14119.9 (11)
C10—C3—C4111.59 (12)C16—C15—C14119.08 (13)
C2—C3—C4107.25 (11)C16—C15—H15119.4 (11)
C11—C4—C3112.15 (11)C14—C15—H15121.5 (11)
C11—C4—C5109.54 (11)C15—C16—C17121.49 (13)
C3—C4—C5112.56 (11)C15—C16—Cl1118.67 (11)
C11—C4—H4105.9 (10)C17—C16—Cl1119.85 (11)
C3—C4—H4107.8 (10)C16—C17—C18118.99 (13)
C5—C4—H4108.6 (10)C16—C17—H17121.1 (12)
C6—C5—C13113.33 (10)C18—C17—H17119.9 (12)
C6—C5—C4112.58 (11)C17—C18—C13120.58 (13)
C13—C5—C4107.19 (10)C17—C18—H18119.9 (11)
C6—C5—H5109.1 (10)C13—C18—H18119.5 (10)
C13—C5—H5107.0 (9)C7—C19—H19A113.7 (13)
C4—C5—H5107.3 (9)C7—C19—H19B110.8 (13)
C1—C6—C7117.95 (12)H19A—C19—H19B104.6 (18)
C1—C6—C5121.75 (12)C7—C19—H19C108.6 (13)
C7—C6—C5120.20 (12)H19A—C19—H19C109.5 (19)
N1—C7—C6123.02 (13)H19B—C19—H19C109.6 (18)
N1—C7—C19114.57 (12)N2—C20—C9177.77 (17)
C6—C7—C19122.37 (13)C22—C21—S1113.37 (15)
N1—C8—C9121.71 (13)C22—C21—H21A111.5 (15)
N1—C8—S1119.68 (11)S1—C21—H21A103.7 (15)
C9—C8—S1118.50 (11)C22—C21—H21B113.4 (13)
C8—C9—C1119.97 (13)S1—C21—H21B106.3 (13)
C8—C9—C20119.01 (13)H21A—C21—H21B108 (2)
C1—C9—C20121.01 (13)C21—C22—H22A109.8 (17)
C3—C10—H10A110.9 (11)C21—C22—H22B114.1 (16)
C3—C10—H10B112.5 (11)H22A—C22—H22B111 (2)
H10A—C10—H10B109.2 (16)C21—C22—H22C112.5 (15)
C3—C10—H10C110.1 (12)H22A—C22—H22C105 (2)
H10A—C10—H10C106.2 (16)H22B—C22—H22C104 (2)
C6—C1—C2—C320.84 (18)C7—N1—C8—S1179.14 (10)
C9—C1—C2—C3158.07 (12)C21—S1—C8—N116.72 (14)
C1—C2—C3—O170.69 (14)C21—S1—C8—C9166.99 (12)
C1—C2—C3—C10173.18 (12)N1—C8—C9—C14.9 (2)
C1—C2—C3—C451.68 (15)S1—C8—C9—C1178.87 (10)
O1—C3—C4—C1165.87 (14)N1—C8—C9—C20174.18 (13)
C10—C3—C4—C1152.30 (15)S1—C8—C9—C202.02 (17)
C2—C3—C4—C11172.75 (11)C6—C1—C9—C80.62 (19)
O1—C3—C4—C558.20 (14)C2—C1—C9—C8179.58 (12)
C10—C3—C4—C5176.36 (11)C6—C1—C9—C20178.46 (12)
C2—C3—C4—C563.19 (14)C2—C1—C9—C200.49 (19)
C11—C4—C5—C6166.36 (10)C3—C4—C11—O267.98 (16)
C3—C4—C5—C640.86 (15)C5—C4—C11—O257.75 (16)
C11—C4—C5—C1368.35 (13)C3—C4—C11—C12113.30 (14)
C3—C4—C5—C13166.15 (11)C5—C4—C11—C12120.97 (14)
C9—C1—C6—C75.11 (18)C6—C5—C13—C14135.46 (13)
C2—C1—C6—C7173.82 (12)C4—C5—C13—C1499.70 (14)
C9—C1—C6—C5178.36 (12)C6—C5—C13—C1848.46 (16)
C2—C1—C6—C52.72 (19)C4—C5—C13—C1876.37 (15)
C13—C5—C6—C1129.28 (13)C18—C13—C14—C151.0 (2)
C4—C5—C6—C17.41 (17)C5—C13—C14—C15175.14 (12)
C13—C5—C6—C754.26 (16)C13—C14—C15—C160.1 (2)
C4—C5—C6—C7176.13 (11)C14—C15—C16—C171.1 (2)
C8—N1—C7—C63.2 (2)C14—C15—C16—Cl1178.98 (11)
C8—N1—C7—C19174.33 (13)C15—C16—C17—C181.1 (2)
C1—C6—C7—N17.4 (2)Cl1—C16—C17—C18179.05 (10)
C5—C6—C7—N1176.06 (12)C16—C17—C18—C130.0 (2)
C1—C6—C7—C19170.04 (13)C14—C13—C18—C171.0 (2)
C5—C6—C7—C196.6 (2)C5—C13—C18—C17175.07 (12)
C7—N1—C8—C93.0 (2)C8—S1—C21—C2272.41 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)2.06 (2)2.8655 (15)155 (2)
C5—H5···O1i0.98 (2)2.49 (2)3.4276 (16)160 (1)
C14—H14···O1i0.97 (2)2.46 (2)3.3523 (17)154 (2)
C18—H18···N2ii0.98 (2)2.56 (2)3.538 (2)174 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBojarski, A. J., Mokrosz, M. J., Minol, S. C., Kozioł, A., Wesołowska, A., Tatarczyńska, E., Kłodzińska, A. & Chojnacka-Wójcik, E. (2002). Bioorg. Med. Chem. 10, 87–95.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrauss, J., Müller, C., Kiessling, J., Richter, S., Staudacher, V. & Bracher, F. (2014). Arch. Pharm. Chem. Life Sci. 347, 283–290.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, J., Lu, J., Zhou, Y., Li, Y., Cheng, J. & Zheng, C. (2006). Bioorg. Med. Chem. Lett. 16, 5285–5289.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds