organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(3-Bromo­phen­yl)-3-(3-fluoro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sir M. V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, khalil.i@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 7 March 2017; accepted 9 March 2017; online 14 March 2017)

In the title compound, C15H10BrFO, the olefinic double bond adopts an E conformation. The mol­ecule is non-planar as seen by the dihedral angle of 48.92 (11)° between the bromo­phenyl and fluoro­phenyl rings. The carbonyl group is twisted from the plane of the bromo­phenyl ring and the olefinic double bond. The trans conformation of the C=C double bond in the central enone group is confirmed by the C—C=C—C torsion angle of −165.7 (2)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Great attention has been paid in recent years to the development of materials, including chalcone derivatives, for second and third order non-linear optical (NLO) applications such as telecommunications, optical computing, optical data storage and optical information processing (Shettigar et al., 2006[Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.]). Chalcones and their derivatives also demonstrate a wide range of biological activities including applications as anti­oxidants, anti­fungal, anti­bacterial and cardioprotective agents. In view of the broad spectrum of applications associated with chalcones and as a part of our ongoing work on such mol­ecules (Chidan et al., 2017[Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170238.]; Harini et al., 2017[Harini, K. S., Quah, C. K., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170287.]), we report the synthesis and crystal structure of the title compound here.

The mol­ecule, shown in Fig. 1[link], is non-planar. This is evident from the dihedral angle of 48.92 (11)° between the bromo­phenyl and fluoro­phenyl rings that are bridged by the carbonyl substituent on the bromo­benzene ring and olefinic double bond. This is higher than the value of 19.13 (15)° reported for the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The trans conformation about the C7=C8 double bond in the central enone group is confirmed by a C6—C7=C8—C9 torsion angle, −165.7 (2)°. The carbonyl group at C7 is twisted from the plane of the bromo­phenyl ring and the olefinic double bond, as indicated by the O1—C7—C6—C5 and O1—C7—C8—C9 torsion angles of 25.4 (3) and 14.5 (4)°, respectively. No classical hydrogen bonds were found in the structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Synthesis and crystallization

3′-Bromo­aceto­phenone (1.99 g, 0.01 mol) was mixed with 3-fluoro­benzaldehyde (1.24 g, 0.01 mol) and dissolved in methanol (20 ml). To this solution, a catalytic amount of NaOH was added slowly, drop-by-drop, with constant stirring. The reaction mixture was stirred for 4 h. The resulting crude solid was filtered, washed several times with distilled water and finally recrystallized from methanol to give the pure chalcone. Single crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the methanol solution. Yield 88%, m.p. 311–313 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C15H10BrFO
Mr 305.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.6032 (7), 5.9277 (6), 27.600 (3)
β (°) 93.183 (2)
V3) 1242.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.31
Crystal size (mm) 0.49 × 0.44 × 0.33
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.293, 0.408
No. of measured, independent and observed [I > 2σ(I)] reflections 11350, 2983, 2228
Rint 0.027
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.02
No. of reflections 2983
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.26
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku. (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(3-Bromophenyl)-3-(3-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrFOF(000) = 608
Mr = 305.13Dx = 1.632 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2228 reflections
a = 7.6032 (7) Åθ = 1.5–28.1°
b = 5.9277 (6) ŵ = 3.31 mm1
c = 27.600 (3) ÅT = 100 K
β = 93.183 (2)°Prism, green
V = 1242.0 (2) Å30.49 × 0.44 × 0.33 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube2228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 18.4 pixels mm-1θmax = 28.1°, θmin = 1.5°
profile data from ω–scansh = 109
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
k = 77
Tmin = 0.293, Tmax = 0.408l = 3336
11350 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0964P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69112 (4)0.31515 (5)0.70851 (1)0.0627 (1)
F10.8178 (3)0.7659 (3)0.26863 (6)0.0852 (7)
O10.7328 (3)0.2879 (3)0.51261 (6)0.0620 (7)
C10.6003 (3)0.7850 (4)0.57483 (9)0.0475 (7)
C20.5495 (3)0.8515 (4)0.62018 (10)0.0515 (8)
C30.5749 (3)0.7133 (4)0.65974 (9)0.0483 (8)
C40.6523 (3)0.5051 (4)0.65369 (8)0.0421 (7)
C50.7009 (3)0.4319 (3)0.60926 (7)0.0397 (6)
C60.6757 (3)0.5727 (3)0.56913 (7)0.0401 (6)
C70.7279 (3)0.4895 (4)0.52096 (8)0.0454 (7)
C80.7732 (3)0.6600 (4)0.48446 (9)0.0501 (8)
C90.7850 (3)0.6067 (4)0.43836 (8)0.0450 (7)
C100.8346 (3)0.7597 (3)0.39956 (8)0.0388 (6)
C110.8041 (3)0.6932 (4)0.35145 (9)0.0464 (7)
C120.8471 (4)0.8349 (4)0.31528 (9)0.0543 (8)
C130.9198 (3)1.0431 (4)0.32362 (9)0.0531 (8)
C140.9527 (3)1.1078 (4)0.37117 (9)0.0496 (8)
C150.9101 (3)0.9698 (4)0.40878 (8)0.0444 (7)
H1A0.584300.881400.548400.0570*
H2A0.497300.992000.623800.0620*
H3A0.540900.758900.690100.0580*
H5A0.750300.289600.606000.0480*
H8A0.793800.808200.494300.0600*
H9A0.759600.458300.429600.0540*
H11A0.754800.552900.344100.0560*
H13A0.946101.137600.298100.0640*
H14A1.004701.247100.378000.0600*
H15A0.932001.017500.440600.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0882 (2)0.0625 (2)0.0379 (2)0.0103 (1)0.0080 (1)0.0039 (1)
F10.1197 (15)0.0972 (12)0.0388 (9)0.0197 (11)0.0048 (9)0.0105 (8)
O10.1000 (15)0.0422 (10)0.0446 (9)0.0032 (9)0.0101 (9)0.0015 (7)
C10.0502 (13)0.0354 (11)0.0561 (14)0.0029 (9)0.0038 (11)0.0059 (10)
C20.0502 (13)0.0378 (12)0.0666 (16)0.0026 (9)0.0039 (11)0.0067 (11)
C30.0496 (13)0.0427 (12)0.0532 (14)0.0005 (10)0.0078 (11)0.0111 (10)
C40.0469 (12)0.0404 (11)0.0392 (11)0.0030 (9)0.0046 (9)0.0007 (9)
C50.0438 (11)0.0329 (10)0.0425 (11)0.0028 (9)0.0032 (9)0.0019 (9)
C60.0426 (11)0.0365 (11)0.0411 (11)0.0060 (9)0.0015 (9)0.0003 (9)
C70.0536 (13)0.0435 (12)0.0387 (11)0.0074 (10)0.0003 (9)0.0005 (9)
C80.0648 (15)0.0413 (12)0.0440 (12)0.0101 (10)0.0027 (11)0.0017 (9)
C90.0506 (12)0.0371 (10)0.0474 (12)0.0017 (9)0.0036 (10)0.0004 (9)
C100.0387 (11)0.0372 (10)0.0408 (11)0.0017 (8)0.0057 (9)0.0007 (8)
C110.0508 (13)0.0421 (12)0.0465 (12)0.0040 (9)0.0043 (10)0.0073 (10)
C120.0595 (15)0.0663 (16)0.0374 (12)0.0028 (12)0.0052 (10)0.0035 (11)
C130.0565 (14)0.0565 (14)0.0471 (13)0.0029 (11)0.0097 (10)0.0089 (11)
C140.0492 (13)0.0431 (12)0.0566 (14)0.0088 (10)0.0046 (11)0.0002 (11)
C150.0494 (12)0.0430 (11)0.0408 (11)0.0034 (9)0.0018 (9)0.0050 (9)
Geometric parameters (Å, º) top
Br1—C41.896 (2)C11—C121.358 (3)
F1—C121.358 (3)C12—C131.367 (3)
O1—C71.218 (3)C13—C141.377 (3)
C1—C21.387 (4)C14—C151.374 (3)
C1—C61.395 (3)C1—H1A0.9300
C2—C31.370 (4)C2—H2A0.9300
C3—C41.381 (3)C3—H3A0.9300
C4—C51.371 (3)C5—H5A0.9300
C5—C61.392 (3)C8—H8A0.9300
C6—C71.492 (3)C9—H9A0.9300
C7—C81.481 (3)C11—H11A0.9300
C8—C91.319 (3)C13—H13A0.9300
C9—C101.469 (3)C14—H14A0.9300
C10—C111.392 (3)C15—H15A0.9300
C10—C151.389 (3)
C2—C1—C6119.7 (2)C13—C14—C15121.1 (2)
C1—C2—C3121.0 (2)C10—C15—C14120.5 (2)
C2—C3—C4118.7 (2)C2—C1—H1A120.00
Br1—C4—C3118.86 (17)C6—C1—H1A120.00
Br1—C4—C5119.22 (17)C1—C2—H2A120.00
C3—C4—C5121.9 (2)C3—C2—H2A119.00
C4—C5—C6119.35 (18)C2—C3—H3A121.00
C1—C6—C5119.37 (19)C4—C3—H3A121.00
C1—C6—C7121.99 (19)C4—C5—H5A120.00
C5—C6—C7118.63 (18)C6—C5—H5A120.00
O1—C7—C6120.4 (2)C7—C8—H8A119.00
O1—C7—C8122.0 (2)C9—C8—H8A119.00
C6—C7—C8117.64 (19)C8—C9—H9A117.00
C7—C8—C9121.6 (2)C10—C9—H9A117.00
C8—C9—C10126.1 (2)C10—C11—H11A120.00
C9—C10—C11119.00 (19)C12—C11—H11A120.00
C9—C10—C15122.7 (2)C12—C13—H13A121.00
C11—C10—C15118.3 (2)C14—C13—H13A121.00
C10—C11—C12119.5 (2)C13—C14—H14A120.00
F1—C12—C11118.5 (2)C15—C14—H14A119.00
F1—C12—C13118.4 (2)C10—C15—H15A120.00
C11—C12—C13123.1 (2)C14—C15—H15A120.00
C12—C13—C14117.6 (2)
C6—C1—C2—C31.1 (4)C6—C7—C8—C9165.7 (2)
C2—C1—C6—C50.8 (3)C7—C8—C9—C10177.8 (2)
C2—C1—C6—C7178.1 (2)C8—C9—C10—C11166.0 (2)
C1—C2—C3—C40.1 (4)C8—C9—C10—C1513.6 (4)
C2—C3—C4—Br1179.02 (18)C9—C10—C11—C12179.0 (2)
C2—C3—C4—C51.3 (4)C15—C10—C11—C120.6 (3)
Br1—C4—C5—C6178.77 (17)C9—C10—C15—C14179.4 (2)
C3—C4—C5—C61.5 (3)C11—C10—C15—C140.2 (3)
C4—C5—C6—C10.5 (3)C10—C11—C12—F1179.4 (2)
C4—C5—C6—C7179.5 (2)C10—C11—C12—C130.1 (4)
C1—C6—C7—O1153.6 (2)F1—C12—C13—C14178.4 (2)
C1—C6—C7—C826.6 (3)C11—C12—C13—C141.1 (4)
C5—C6—C7—O125.4 (3)C12—C13—C14—C151.5 (4)
C5—C6—C7—C8154.4 (2)C13—C14—C15—C100.8 (4)
O1—C7—C8—C914.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.522.832 (3)100
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Center for facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).

References

First citationChidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170238.  Google Scholar
First citationHarini, K. S., Quah, C. K., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170287.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku. (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44–49.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds