organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[3,4-Bis(2,3-di­chloro­phen­yl)cyclo­butane-1,2-di­yl]bis­­(furan-2-yl­methanone) monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, GSSS Institute of Engineering and Technology For Women, Visveswaraya Technological University, Mysuru 570 016, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, SBRR Mahajana College, Mysuru 570 006, India, dDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, and eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, ajaykumar@ycm.uni-mysore.ac.in

Edited by J. Simpson, University of Otago, New Zealand (Received 14 February 2017; accepted 27 February 2017; online 10 March 2017)

In the title hydrate, C26H16Cl4O4·H2O, the cyclo­butane ring carries two 2,3-di­chloro­phenyl and two furan-2-yl­methanone substituents. It subtends dihedral angles of 86.6 (3) and 37.3 (3)° with the furan rings and 77.0 (5) and 77.0 (3)° with the di­chloro­phenyl rings. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. Additional C—H⋯O and C—H⋯Cl hydrogen bonds generate a three-dimensional network of mol­ecules stacked along the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, a new route to polysubstituted cyclo­butanes via a K2S2O8-promoted intra­molecular [2 + 2]-cyclo­addition (Zhu et al., 2016[Zhu, H.-T., Tong, X.-J., Zhou, N.-N., Yang, D. & Fan, M.-J. (2016). Tetrahedron Lett. 57, 5497-5500.]) and an efficient inter­molecular [2 + 2]-cyclo­addition (Raghavendra et al., 2017[Raghavendra, K. R., Naveen, S., Renuka, N., Prabhudeva, M. G., Lokanath, N. K. & Ajay Kumar, K. (2017). IUCrData, 2, x170113.]) were reported. We herein report the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angles between the central cyclo­butane ring and the two furan rings (O1/C1–C4 and O3/C14–C17) bridged by the carbonyl group are 86.6 (3) and 37.3 (3)°, respectively, whereas the two di­chloro­phenyl rings subtend angles of 77.0 (5) and 77.0 (3)°, respectively, with the cyclo­butane ring. The furan rings are inclined at 68.6 (3)° to one another while the angle between the two di­chloro­phenyl rings is 40.8 (2)°. The carbonyl substituents at C5 and C18 on the (O1/C1–C4 and O3/C14–C17) furan rings lie close to the ring planes, as indicated by the torsion angles O1—C4—C5—O2 = 2.6 (6)° and O3—C17—C18—O4 = −179.0 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds (Table 1[link]), forming chains propagating along the a-axis direction (Fig. 2[link]). Additional C—H⋯O and C—H⋯Cl hydrogen bonds generate a three-dimensional network of mol­ecules stacked along the b axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.54 3.424 (7) 159
C9—H9⋯O2ii 0.93 2.48 3.184 (6) 133
C19—H19⋯O2ii 0.98 2.41 3.267 (5) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
C—H⋯O and C—H⋯Cl hydrogen bonds generating a three-dimensional network of mol­ecules stacked along the b axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A mixture of 2,3-di­chloro­benzaldehyde (5 mmol), 2-acetyl­furan (5 mmol) and sodium hydroxide (5 mmol) in 95% ethanol (25 ml) was refluxed on a water bath for 2 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in a refrigerator overnight. The solid formed was filtered, and washed with cold hydro­chloric acid (5%). Yellow rectangular crystals were obtained from 60% aqueous methanol solution by slow evaporation (yield 82%, m.p. 391–393 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H16Cl4O4·H2O
Mr 552.20
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 10.9673 (12), 20.211 (2), 22.491 (2)
V3) 4985.4 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 4.63
Crystal size (mm) 0.28 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.357, 0.403
No. of measured, independent and observed [I > 2σ(I)] reflections 25946, 4144, 2605
Rint 0.110
(sin θ/λ)max−1) 0.587
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.184, 1.03
No. of reflections 4144
No. of parameters 320
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(3,4-bis(2,3-dichlorophenyl)cyclobutane-1,2-diyl)bis(furan-2-ylmethanone) hydrate top
Crystal data top
C26H16Cl4O4·H2OF(000) = 2256
Mr = 552.20Dx = 1.471 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 2605 reflections
a = 10.9673 (12) Åθ = 4.8–64.8°
b = 20.211 (2) ŵ = 4.63 mm1
c = 22.491 (2) ÅT = 296 K
V = 4985.4 (9) Å3Rectangle, yellow
Z = 80.28 × 0.26 × 0.24 mm
Data collection top
Bruker X8 Proteum
diffractometer
4144 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2605 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.110
Detector resolution: 18.4 pixels mm-1θmax = 64.7°, θmin = 4.8°
φ and ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2323
Tmin = 0.357, Tmax = 0.403l = 2624
25946 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0851P)2 + 1.6075P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4144 reflectionsΔρmax = 0.36 e Å3
320 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (2)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45306 (10)0.30473 (6)0.45130 (6)0.0683 (4)
Cl20.63057 (13)0.30057 (8)0.55980 (6)0.0851 (5)
Cl30.40331 (10)0.18694 (6)0.33566 (7)0.0753 (5)
Cl40.53084 (17)0.07000 (7)0.40060 (9)0.1110 (7)
O10.3358 (3)0.52823 (15)0.24221 (15)0.0638 (11)
O20.4107 (3)0.40209 (15)0.22127 (15)0.0623 (11)
O30.6993 (3)0.43530 (18)0.16593 (15)0.0747 (12)
O40.5712 (3)0.27567 (16)0.17591 (15)0.0740 (12)
C10.3265 (5)0.5923 (3)0.2602 (3)0.076 (2)
C20.4214 (5)0.6099 (3)0.2929 (3)0.078 (2)
C30.4973 (4)0.5542 (2)0.2967 (2)0.0680 (19)
C40.4428 (4)0.5049 (2)0.2654 (2)0.0507 (14)
C50.4746 (3)0.4370 (2)0.25304 (19)0.0487 (12)
C60.5854 (3)0.40991 (19)0.28332 (19)0.0473 (14)
C70.5482 (3)0.3692 (2)0.33959 (18)0.0456 (11)
C80.6285 (3)0.3744 (2)0.39355 (18)0.0467 (12)
C90.7404 (4)0.4062 (2)0.3933 (2)0.0557 (16)
C100.8164 (4)0.4050 (3)0.4419 (2)0.0687 (17)
C110.7832 (4)0.3727 (3)0.4929 (2)0.0730 (19)
C120.6713 (4)0.3412 (2)0.49532 (19)0.0593 (17)
C130.5936 (4)0.3428 (2)0.44642 (19)0.0503 (14)
C140.7232 (5)0.4715 (3)0.1170 (3)0.085 (2)
C150.6914 (5)0.4393 (3)0.0684 (3)0.083 (2)
C160.6448 (5)0.3776 (3)0.0870 (2)0.0723 (19)
C170.6498 (4)0.3768 (2)0.1469 (2)0.0567 (16)
C180.6140 (4)0.3287 (2)0.1908 (2)0.0540 (14)
C190.6361 (3)0.34523 (19)0.25510 (18)0.0463 (12)
C200.5666 (3)0.30417 (19)0.30123 (18)0.0448 (11)
C210.6263 (3)0.2453 (2)0.33068 (19)0.0497 (14)
C220.7508 (4)0.2449 (2)0.3429 (2)0.0617 (16)
C230.8034 (5)0.1936 (3)0.3734 (3)0.082 (2)
C240.7369 (6)0.1410 (3)0.3914 (3)0.086 (2)
C250.6137 (5)0.1381 (2)0.3792 (2)0.072 (2)
C260.5583 (4)0.1908 (2)0.3490 (2)0.0553 (14)
O50.4797 (7)0.4741 (4)0.5418 (5)0.210 (5)
H10.261800.620100.250800.0910*
H20.435100.651100.310000.0930*
H30.571200.551500.316900.0820*
H60.648200.443300.291100.0570*
H70.462200.376000.349700.0550*
H90.764800.428900.359300.0670*
H100.891300.426500.440200.0820*
H110.835200.371900.525600.0870*
H140.757500.513500.117400.1020*
H150.698400.454300.029500.1000*
H160.616000.343900.062600.0870*
H190.723700.342200.263300.0560*
H200.488000.290600.284500.0540*
H220.799000.280000.330100.0740*
H230.886300.195000.381900.0980*
H240.774300.106600.412000.1030*
H5A0.406800.483600.551500.3150*
H5B0.482900.434300.529800.3150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0594 (6)0.0815 (8)0.0641 (8)0.0145 (5)0.0089 (5)0.0080 (6)
Cl20.0958 (9)0.1063 (11)0.0533 (8)0.0027 (8)0.0004 (6)0.0212 (7)
Cl30.0603 (7)0.0729 (8)0.0927 (10)0.0198 (6)0.0031 (6)0.0031 (7)
Cl40.1362 (13)0.0602 (8)0.1365 (16)0.0082 (8)0.0522 (11)0.0300 (9)
O10.0601 (18)0.0644 (19)0.067 (2)0.0081 (14)0.0037 (15)0.0059 (16)
O20.0562 (16)0.0627 (19)0.068 (2)0.0027 (14)0.0140 (16)0.0085 (16)
O30.086 (2)0.078 (2)0.060 (2)0.0212 (18)0.0029 (17)0.0087 (18)
O40.103 (2)0.060 (2)0.059 (2)0.0121 (18)0.0065 (18)0.0118 (17)
C10.089 (4)0.062 (3)0.076 (4)0.022 (3)0.011 (3)0.005 (3)
C20.103 (4)0.057 (3)0.074 (4)0.004 (3)0.002 (3)0.004 (3)
C30.073 (3)0.061 (3)0.070 (4)0.000 (2)0.005 (3)0.006 (2)
C40.051 (2)0.053 (2)0.048 (3)0.0021 (19)0.0017 (19)0.005 (2)
C50.048 (2)0.056 (2)0.042 (2)0.0055 (19)0.0027 (19)0.0005 (19)
C60.047 (2)0.046 (2)0.049 (3)0.0056 (17)0.0006 (19)0.0021 (19)
C70.0397 (19)0.054 (2)0.043 (2)0.0005 (17)0.0027 (17)0.0014 (19)
C80.050 (2)0.053 (2)0.037 (2)0.0011 (18)0.0017 (18)0.0020 (18)
C90.048 (2)0.072 (3)0.047 (3)0.006 (2)0.003 (2)0.003 (2)
C100.058 (3)0.082 (3)0.066 (3)0.011 (2)0.007 (2)0.004 (3)
C110.061 (3)0.097 (4)0.061 (3)0.007 (3)0.012 (2)0.003 (3)
C120.069 (3)0.070 (3)0.039 (3)0.003 (2)0.001 (2)0.003 (2)
C130.049 (2)0.055 (2)0.047 (3)0.0016 (19)0.0003 (19)0.006 (2)
C140.096 (4)0.083 (4)0.077 (4)0.022 (3)0.007 (3)0.025 (3)
C150.095 (4)0.100 (4)0.055 (4)0.006 (3)0.009 (3)0.015 (3)
C160.086 (3)0.081 (4)0.050 (3)0.000 (3)0.004 (3)0.006 (3)
C170.058 (2)0.065 (3)0.047 (3)0.000 (2)0.002 (2)0.004 (2)
C180.058 (2)0.051 (2)0.053 (3)0.002 (2)0.005 (2)0.002 (2)
C190.046 (2)0.047 (2)0.046 (2)0.0033 (17)0.0017 (18)0.0003 (18)
C200.0413 (19)0.046 (2)0.047 (2)0.0066 (16)0.0023 (17)0.0007 (18)
C210.052 (2)0.046 (2)0.051 (3)0.0011 (18)0.0004 (19)0.0009 (19)
C220.052 (2)0.067 (3)0.066 (3)0.002 (2)0.002 (2)0.001 (2)
C230.066 (3)0.098 (4)0.081 (4)0.024 (3)0.010 (3)0.008 (3)
C240.090 (4)0.079 (4)0.089 (4)0.032 (3)0.012 (3)0.023 (3)
C250.091 (4)0.050 (3)0.074 (4)0.009 (2)0.022 (3)0.009 (2)
C260.056 (2)0.053 (2)0.057 (3)0.0014 (19)0.005 (2)0.002 (2)
O50.172 (6)0.142 (6)0.316 (12)0.016 (5)0.032 (7)0.107 (7)
Geometric parameters (Å, º) top
Cl1—C131.726 (4)C15—C161.411 (8)
Cl2—C121.725 (4)C16—C171.348 (6)
Cl3—C261.728 (5)C17—C181.440 (6)
Cl4—C251.718 (5)C18—C191.504 (6)
O1—C11.361 (7)C19—C201.532 (5)
O1—C41.368 (5)C20—C211.511 (5)
O2—C51.225 (5)C21—C261.393 (6)
O3—C141.347 (7)C21—C221.393 (6)
O3—C171.370 (5)C22—C231.371 (7)
O4—C181.217 (5)C23—C241.351 (9)
O5—H5B0.8500C24—C251.380 (9)
O5—H5A0.8500C25—C261.402 (6)
C1—C21.323 (8)C1—H10.9300
C2—C31.403 (7)C2—H20.9300
C3—C41.359 (6)C3—H30.9300
C4—C51.443 (6)C6—H60.9800
C5—C61.497 (5)C7—H70.9800
C6—C71.564 (6)C9—H90.9300
C6—C191.556 (5)C10—H100.9300
C7—C201.585 (6)C11—H110.9300
C7—C81.503 (5)C14—H140.9300
C8—C91.385 (6)C15—H150.9300
C8—C131.403 (6)C16—H160.9300
C9—C101.375 (6)C19—H190.9800
C10—C111.369 (7)C20—H200.9800
C11—C121.384 (6)C22—H220.9300
C12—C131.392 (6)C23—H230.9300
C14—C151.319 (9)C24—H240.9300
C1—O1—C4106.2 (4)C22—C21—C26117.5 (4)
C14—O3—C17106.9 (4)C21—C22—C23121.1 (4)
H5A—O5—H5B110.00C22—C23—C24121.2 (5)
O1—C1—C2111.2 (5)C23—C24—C25120.2 (6)
C1—C2—C3106.6 (5)Cl4—C25—C24119.8 (4)
C2—C3—C4107.2 (4)C24—C25—C26119.2 (4)
O1—C4—C3108.8 (4)Cl4—C25—C26121.0 (4)
O1—C4—C5117.5 (4)Cl3—C26—C21120.7 (3)
C3—C4—C5133.7 (4)C21—C26—C25120.8 (4)
O2—C5—C6121.3 (4)Cl3—C26—C25118.4 (3)
C4—C5—C6117.2 (3)O1—C1—H1124.00
O2—C5—C4121.5 (4)C2—C1—H1124.00
C5—C6—C19114.3 (3)C3—C2—H2127.00
C7—C6—C1988.9 (3)C1—C2—H2127.00
C5—C6—C7110.4 (3)C2—C3—H3126.00
C6—C7—C2087.9 (3)C4—C3—H3126.00
C8—C7—C20115.0 (3)C7—C6—H6114.00
C6—C7—C8117.6 (3)C19—C6—H6114.00
C7—C8—C9123.2 (4)C5—C6—H6114.00
C7—C8—C13119.5 (3)C6—C7—H7111.00
C9—C8—C13117.2 (4)C8—C7—H7112.00
C8—C9—C10121.7 (4)C20—C7—H7111.00
C9—C10—C11120.9 (4)C8—C9—H9119.00
C10—C11—C12119.2 (4)C10—C9—H9119.00
Cl2—C12—C13121.1 (3)C11—C10—H10119.00
C11—C12—C13120.1 (4)C9—C10—H10120.00
Cl2—C12—C11118.8 (3)C10—C11—H11120.00
Cl1—C13—C12119.1 (3)C12—C11—H11120.00
C8—C13—C12120.9 (4)C15—C14—H14124.00
Cl1—C13—C8120.0 (3)O3—C14—H14125.00
O3—C14—C15111.0 (5)C14—C15—H15127.00
C14—C15—C16106.6 (6)C16—C15—H15127.00
C15—C16—C17107.0 (5)C17—C16—H16126.00
O3—C17—C18118.5 (4)C15—C16—H16127.00
C16—C17—C18133.0 (4)C6—C19—H19109.00
O3—C17—C16108.5 (4)C18—C19—H19109.00
O4—C18—C17120.7 (4)C20—C19—H19109.00
C17—C18—C19117.7 (4)C7—C20—H20109.00
O4—C18—C19121.5 (4)C19—C20—H20109.00
C6—C19—C18121.4 (3)C21—C20—H20109.00
C18—C19—C20116.8 (3)C23—C22—H22120.00
C6—C19—C2090.1 (3)C21—C22—H22119.00
C7—C20—C1989.0 (3)C22—C23—H23119.00
C7—C20—C21118.0 (3)C24—C23—H23119.00
C19—C20—C21120.5 (3)C23—C24—H24120.00
C20—C21—C22121.1 (3)C25—C24—H24120.00
C20—C21—C26121.4 (3)
C4—O1—C1—C20.2 (6)C9—C10—C11—C120.3 (8)
C1—O1—C4—C30.2 (5)C10—C11—C12—Cl2179.9 (4)
C1—O1—C4—C5179.7 (4)C10—C11—C12—C130.3 (7)
C17—O3—C14—C150.2 (6)Cl2—C12—C13—Cl11.3 (5)
C14—O3—C17—C160.5 (5)Cl2—C12—C13—C8178.3 (3)
C14—O3—C17—C18179.2 (4)C11—C12—C13—Cl1178.5 (4)
O1—C1—C2—C30.1 (7)C11—C12—C13—C81.9 (7)
C1—C2—C3—C40.0 (6)O3—C14—C15—C160.7 (6)
C2—C3—C4—O10.1 (5)C14—C15—C16—C170.9 (6)
C2—C3—C4—C5179.7 (5)C15—C16—C17—O30.8 (6)
O1—C4—C5—O22.6 (6)C15—C16—C17—C18178.8 (5)
O1—C4—C5—C6174.2 (4)O3—C17—C18—O4179.0 (4)
C3—C4—C5—O2177.6 (5)O3—C17—C18—C191.4 (6)
C3—C4—C5—C65.6 (7)C16—C17—C18—O41.5 (8)
O2—C5—C6—C778.4 (5)C16—C17—C18—C19179.0 (5)
O2—C5—C6—C1920.1 (5)O4—C18—C19—C6127.4 (4)
C4—C5—C6—C798.4 (4)O4—C18—C19—C2019.4 (6)
C4—C5—C6—C19163.2 (3)C17—C18—C19—C655.1 (5)
C5—C6—C7—C8142.2 (3)C17—C18—C19—C20163.1 (4)
C5—C6—C7—C20100.6 (3)C6—C19—C20—C715.4 (3)
C19—C6—C7—C8102.2 (3)C6—C19—C20—C21137.7 (4)
C19—C6—C7—C2015.1 (2)C18—C19—C20—C7141.1 (3)
C5—C6—C19—C1825.5 (5)C18—C19—C20—C2196.5 (4)
C5—C6—C19—C2096.4 (3)C7—C20—C21—C2273.1 (5)
C7—C6—C19—C18137.5 (3)C7—C20—C21—C26104.0 (4)
C7—C6—C19—C2015.6 (3)C19—C20—C21—C2233.8 (6)
C6—C7—C8—C98.5 (6)C19—C20—C21—C26149.1 (4)
C6—C7—C8—C13175.1 (3)C20—C21—C22—C23175.3 (5)
C20—C7—C8—C992.9 (5)C26—C21—C22—C231.9 (7)
C20—C7—C8—C1383.5 (4)C20—C21—C26—Cl32.9 (6)
C6—C7—C20—C1915.3 (2)C20—C21—C26—C25176.5 (4)
C6—C7—C20—C21139.8 (3)C22—C21—C26—Cl3179.9 (3)
C8—C7—C20—C19104.4 (3)C22—C21—C26—C250.7 (6)
C8—C7—C20—C2120.1 (4)C21—C22—C23—C241.6 (9)
C7—C8—C9—C10174.1 (4)C22—C23—C24—C250.0 (10)
C13—C8—C9—C102.3 (6)C23—C24—C25—Cl4178.3 (5)
C7—C8—C13—Cl15.9 (5)C23—C24—C25—C261.2 (9)
C7—C8—C13—C12173.7 (4)Cl4—C25—C26—Cl31.9 (5)
C9—C8—C13—Cl1177.6 (3)Cl4—C25—C26—C21178.7 (3)
C9—C8—C13—C122.9 (6)C24—C25—C26—Cl3178.6 (4)
C8—C9—C10—C110.8 (8)C24—C25—C26—C210.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.543.424 (7)159
C9—H9···O2ii0.932.483.184 (6)133
C19—H19···O2ii0.982.413.267 (5)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaghavendra, K. R., Naveen, S., Renuka, N., Prabhudeva, M. G., Lokanath, N. K. & Ajay Kumar, K. (2017). IUCrData, 2, x170113.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-T., Tong, X.-J., Zhou, N.-N., Yang, D. & Fan, M.-J. (2016). Tetrahedron Lett. 57, 5497–5500.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds