organic compounds
3-(4-Chlorobutyl)-3H-indole-5-carbonitrile
aDepartment of Chemistry, Periyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India, bCentre for Research and Development, PRIST University, Thanjavur 613 403, Tamil Nadu, India, and cInorganic & Structural Chemistry, Howard University, Washington, DC 20059, USA
*Correspondence e-mail: lvsethu13@gmail.com
In the title compound, C13H12ClN2, the indole moiety and the chloroalkyl substituent are nearly coplanar, making a dihedral angle of 1.27 (10)°. In the crystal, a supramolecular sheet parallel to the ab plane is generated via weak C—H⋯Cl hydrogen bonds, aromatic π–π stacking [centroid–centroid distances of 3.5563 (13) and 3.6792 (13) Å] and C—H⋯π interactions.
Keywords: crystal structure; 3-(4-chlorobutyl)-3H-indole-5-carbonitrile,non-covalent interactions; supramolecular sheet.
CCDC reference: 1536778
Structure description
The synthesis of indoles currently is of great interest because of their potential in acting as β-blockers, anti-arrhythmic, antiviral, anti-asthmatic, opioid antagonist and also sexual dysfunction drugs (Biswal et al., 2012). The title compound, an indole derivative, is a key intermediate in the synthesis of the antidepressant drug vilazodone hydrochloride (Smith et al., 1981). The present study focuses on its and the non-covalent interactions present in it.
An ORTEP view of the title compound is shown in Fig. 1. The indole moiety (N1/C2–C9) and the chloroalkyl substituent (C11–C14/Cl1) are nearly coplanar, making a dihedral angle of 1.27 (10)°. The C11—C12—C13—C14 and C12—C13—C14—Cl1 torsion angles are −179.08 (14)° and 178.06 (12)° respectively.
In the crystal, neighboring molecules self-assemble through weak C—H⋯Cl interactions (Table 1), forming zigzag supramolecular C(9) chains extending along the b-axis direction, as shown in Fig. 2a. π–π stacking interactions are observed between the five- (N1/C2/C3/C9/C8; centroid Cg1) and six-membered rings (C4–C9, centroid Cg2) of symmetry-related molecules [Cg1⋯Cg2iv = 3.6792 (13) Å, perpendicular distance = 3.3537 (7) Å, slip angle = 23.4°; Cg2⋯Cg2iv = 3.5563 (13) Å, perpendicular distance = 3.3648 (7) Å, slip angle = 18.9°; symmetry code: (iv) −x, 1 − y, 1 − z] (Fig. 2b). Adjacent chains are linked by weak C—H⋯π interactions (Fig. 2c, Table 1), generating a supramolecular sheet-like architecture parallel to the ab plane.
Synthesis and crystallization
Crystals of the title compound were obtained by dissolving 3-(4-chlorobutyl)-3H-indole-5-carbonitrile (purchased from the Tokyo Chemical Industry Co. Ltd; 58.17 mg, 0.25 mmol) in 20 ml of hot DMF, warming the resultant solution over a water bath for half an hour and then allowing it to evaporate slowly. After a couple of weeks, colourless block-shaped crystals were obtained.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1536778
https://doi.org/10.1107/S2414314617003765/hg4020sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617003765/hg4020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617003765/hg4020Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C13H12ClN2 | F(000) = 484 |
Mr = 231.70 | Dx = 1.312 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1952 reflections |
a = 8.870 (2) Å | θ = 2.6–24.6° |
b = 9.271 (2) Å | µ = 0.30 mm−1 |
c = 14.498 (3) Å | T = 100 K |
β = 100.236 (4)° | Block, colourless |
V = 1173.3 (4) Å3 | 0.18 × 0.17 × 0.15 mm |
Z = 4 |
Bruker APEX2 diffractometer | 1632 reflections with I > 2σ(I) |
Detector resolution: 18.4 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 24.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −10→10 |
Tmin = 0.618, Tmax = 0.745 | k = −10→10 |
7342 measured reflections | l = −17→16 |
1952 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.114 | W = 1/[Σ2(FO2) + (0.0787P)2 + 0.103P] where P = (FO2 + 2FC2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
1952 reflections | Δρmax = 0.77 e Å−3 |
145 parameters | Δρmin = −0.26 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.64037 (6) | 0.62791 (5) | 0.10556 (3) | 0.0374 (2) | |
N1 | 0.17148 (16) | 0.77777 (15) | 0.56156 (10) | 0.0201 (5) | |
N2 | 0.11010 (18) | 0.07016 (16) | 0.63996 (10) | 0.0253 (5) | |
C2 | 0.24695 (19) | 0.77015 (18) | 0.48563 (12) | 0.0196 (5) | |
C3 | 0.27340 (19) | 0.62955 (18) | 0.46458 (12) | 0.0180 (5) | |
C4 | 0.19954 (19) | 0.39639 (19) | 0.54477 (12) | 0.0167 (5) | |
C5 | 0.12932 (19) | 0.34712 (18) | 0.61728 (12) | 0.0171 (5) | |
C6 | 0.07011 (19) | 0.44444 (18) | 0.67723 (11) | 0.0185 (5) | |
C7 | 0.0791 (2) | 0.59138 (18) | 0.66467 (12) | 0.0191 (5) | |
C8 | 0.14883 (19) | 0.63995 (18) | 0.59107 (12) | 0.0176 (5) | |
C9 | 0.21102 (18) | 0.54455 (19) | 0.53132 (11) | 0.0153 (5) | |
C10 | 0.11668 (19) | 0.19390 (19) | 0.63026 (12) | 0.0191 (5) | |
C11 | 0.34870 (18) | 0.56955 (19) | 0.38841 (11) | 0.0182 (5) | |
C12 | 0.4092 (2) | 0.68144 (18) | 0.32641 (12) | 0.0203 (5) | |
C13 | 0.4845 (2) | 0.60776 (18) | 0.25126 (11) | 0.0190 (5) | |
C14 | 0.5469 (2) | 0.71641 (19) | 0.19066 (12) | 0.0215 (5) | |
H2 | 0.27617 | 0.85126 | 0.45284 | 0.0240* | |
H4 | 0.23902 | 0.33015 | 0.50508 | 0.0200* | |
H6 | 0.02363 | 0.40800 | 0.72665 | 0.0220* | |
H7 | 0.03952 | 0.65724 | 0.70453 | 0.0230* | |
H11A | 0.27405 | 0.50708 | 0.34793 | 0.0220* | |
H11B | 0.43526 | 0.50774 | 0.41744 | 0.0220* | |
H12A | 0.32352 | 0.74294 | 0.29572 | 0.0240* | |
H12B | 0.48507 | 0.74416 | 0.36575 | 0.0240* | |
H13A | 0.40796 | 0.54622 | 0.21144 | 0.0230* | |
H13B | 0.56877 | 0.54487 | 0.28208 | 0.0230* | |
H14A | 0.46219 | 0.77712 | 0.15794 | 0.0260* | |
H14B | 0.62104 | 0.78010 | 0.23056 | 0.0260* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0600 (4) | 0.0245 (3) | 0.0365 (3) | 0.0068 (2) | 0.0330 (3) | 0.0054 (2) |
N1 | 0.0249 (8) | 0.0132 (8) | 0.0242 (8) | −0.0009 (6) | 0.0095 (6) | −0.0002 (6) |
N2 | 0.0355 (9) | 0.0163 (9) | 0.0265 (9) | 0.0014 (7) | 0.0123 (7) | 0.0007 (6) |
C2 | 0.0229 (9) | 0.0149 (9) | 0.0223 (9) | −0.0021 (7) | 0.0074 (7) | 0.0028 (7) |
C3 | 0.0170 (9) | 0.0180 (10) | 0.0196 (9) | −0.0001 (7) | 0.0053 (7) | 0.0007 (7) |
C4 | 0.0177 (9) | 0.0154 (9) | 0.0178 (9) | 0.0020 (7) | 0.0053 (7) | −0.0023 (7) |
C5 | 0.0203 (9) | 0.0125 (9) | 0.0186 (9) | 0.0001 (7) | 0.0038 (7) | 0.0006 (6) |
C6 | 0.0202 (9) | 0.0190 (9) | 0.0182 (9) | −0.0007 (7) | 0.0087 (7) | 0.0012 (7) |
C7 | 0.0219 (9) | 0.0157 (9) | 0.0213 (9) | 0.0011 (7) | 0.0079 (7) | −0.0024 (7) |
C8 | 0.0182 (9) | 0.0144 (10) | 0.0203 (9) | 0.0005 (7) | 0.0036 (7) | −0.0007 (7) |
C9 | 0.0153 (8) | 0.0152 (9) | 0.0160 (8) | 0.0005 (6) | 0.0043 (7) | −0.0001 (7) |
C10 | 0.0206 (9) | 0.0197 (10) | 0.0187 (9) | 0.0018 (7) | 0.0078 (7) | −0.0003 (7) |
C11 | 0.0209 (9) | 0.0158 (9) | 0.0194 (9) | 0.0002 (7) | 0.0074 (7) | 0.0018 (7) |
C12 | 0.0235 (10) | 0.0179 (9) | 0.0207 (9) | 0.0004 (8) | 0.0074 (7) | 0.0027 (7) |
C13 | 0.0236 (9) | 0.0162 (9) | 0.0186 (9) | −0.0006 (7) | 0.0072 (7) | 0.0009 (7) |
C14 | 0.0279 (10) | 0.0173 (9) | 0.0218 (9) | 0.0009 (7) | 0.0113 (8) | −0.0002 (7) |
Cl1—C14 | 1.8018 (19) | C12—C13 | 1.536 (2) |
N1—C2 | 1.388 (2) | C13—C14 | 1.505 (2) |
N1—C8 | 1.374 (2) | C2—H2 | 0.9500 |
N2—C10 | 1.159 (2) | C4—H4 | 0.9500 |
C2—C3 | 1.369 (2) | C6—H6 | 0.9500 |
C3—C9 | 1.433 (2) | C7—H7 | 0.9500 |
C3—C11 | 1.496 (2) | C11—H11A | 0.9900 |
C4—C5 | 1.391 (2) | C11—H11B | 0.9900 |
C4—C9 | 1.394 (3) | C12—H12A | 0.9900 |
C5—C6 | 1.417 (2) | C12—H12B | 0.9900 |
C5—C10 | 1.440 (2) | C13—H13A | 0.9900 |
C6—C7 | 1.379 (2) | C13—H13B | 0.9900 |
C7—C8 | 1.400 (2) | C14—H14A | 0.9900 |
C8—C9 | 1.417 (2) | C14—H14B | 0.9900 |
C11—C12 | 1.531 (2) | ||
C2—N1—C8 | 108.51 (14) | C9—C4—H4 | 121.00 |
N1—C2—C3 | 110.57 (15) | C5—C6—H6 | 120.00 |
C2—C3—C9 | 105.73 (15) | C7—C6—H6 | 120.00 |
C2—C3—C11 | 129.47 (16) | C6—C7—H7 | 121.00 |
C9—C3—C11 | 124.80 (15) | C8—C7—H7 | 121.00 |
C5—C4—C9 | 118.89 (16) | C3—C11—H11A | 108.00 |
C4—C5—C6 | 121.27 (15) | C3—C11—H11B | 108.00 |
C4—C5—C10 | 118.59 (15) | C12—C11—H11A | 108.00 |
C6—C5—C10 | 120.14 (15) | C12—C11—H11B | 108.00 |
C5—C6—C7 | 120.78 (15) | H11A—C11—H11B | 107.00 |
C6—C7—C8 | 117.55 (15) | C11—C12—H12A | 109.00 |
N1—C8—C7 | 130.22 (16) | C11—C12—H12B | 109.00 |
N1—C8—C9 | 107.21 (15) | C13—C12—H12A | 109.00 |
C7—C8—C9 | 122.57 (15) | C13—C12—H12B | 109.00 |
C3—C9—C4 | 133.08 (16) | H12A—C12—H12B | 108.00 |
C3—C9—C8 | 107.97 (15) | C12—C13—H13A | 109.00 |
C4—C9—C8 | 118.93 (15) | C12—C13—H13B | 109.00 |
N2—C10—C5 | 178.24 (19) | C14—C13—H13A | 109.00 |
C3—C11—C12 | 115.51 (14) | C14—C13—H13B | 109.00 |
C11—C12—C13 | 110.93 (14) | H13A—C13—H13B | 108.00 |
C12—C13—C14 | 111.58 (14) | Cl1—C14—H14A | 109.00 |
Cl1—C14—C13 | 110.89 (12) | Cl1—C14—H14B | 109.00 |
N1—C2—H2 | 125.00 | C13—C14—H14A | 109.00 |
C3—C2—H2 | 125.00 | C13—C14—H14B | 109.00 |
C5—C4—H4 | 121.00 | H14A—C14—H14B | 108.00 |
C8—N1—C2—C3 | 0.3 (2) | C5—C4—C9—C8 | −0.9 (2) |
C2—N1—C8—C7 | 179.71 (18) | C4—C5—C6—C7 | 0.7 (3) |
C2—N1—C8—C9 | −0.42 (19) | C10—C5—C6—C7 | −178.91 (16) |
N1—C2—C3—C9 | −0.1 (2) | C5—C6—C7—C8 | −0.2 (3) |
N1—C2—C3—C11 | 179.14 (16) | C6—C7—C8—N1 | 178.92 (17) |
C2—C3—C9—C4 | 178.35 (18) | C6—C7—C8—C9 | −0.9 (3) |
C2—C3—C9—C8 | −0.18 (19) | N1—C8—C9—C3 | 0.37 (19) |
C11—C3—C9—C4 | −0.9 (3) | N1—C8—C9—C4 | −178.40 (15) |
C11—C3—C9—C8 | −179.45 (16) | C7—C8—C9—C3 | −179.75 (16) |
C2—C3—C11—C12 | 1.9 (3) | C7—C8—C9—C4 | 1.5 (3) |
C9—C3—C11—C12 | −179.01 (15) | C3—C11—C12—C13 | 179.74 (14) |
C9—C4—C5—C6 | −0.1 (3) | C11—C12—C13—C14 | −179.08 (14) |
C9—C4—C5—C10 | 179.47 (16) | C12—C13—C14—Cl1 | 178.06 (12) |
C5—C4—C9—C3 | −179.31 (18) |
Cg1 and Cg2 are the centroids of the N1/C2/C3/C9/C8 and C4–C9 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cl1i | 0.95 | 2.80 | 3.750 (2) | 178 |
C13—H13B···Cg2ii | 0.99 | 2.83 | 3.729 (2) | 151 |
C14—H14A···Cg1iii | 0.99 | 2.70 | 3.619 (2) | 154 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors wish to acknowledge the assistance of Dr Matthias Zeller with the data collection and NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase the X-ray diffractometer. RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.
References
Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asian J. Pharm. Clin. Res. 5, 1–6. CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, C. B., Garcia-Sevilla, J. A. & Hollingsworth, P. J. (1981). Brain Res. 210, 413–418. CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.