organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Chloro-3-(2,2-di­bromo­acet­yl)-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDr. Reddys Laboratories Ltd, Custom Pharmaceutical Services, Bollaram Road, Miyapur, Hyderabad 500 049, India, bDepartment of Engineering Chemistry, Andhra University, Visakhapatnam 530 003, India, and cDr. Reddys Laboratories Ltd, IPDO, Bachupally, Hyderabad, 500 090, India
*Correspondence e-mail: smahapatra@drreddys.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 March 2017; accepted 6 March 2017; online 10 March 2017)

In the title compound, C11H5Br2ClO3, the benzo­pyran ring system is essentially planar (r.m.s. deviation = 0.023 Å) and one of the bromine atoms is almost coplanar with it [deviation = 0.091 (1) Å]. In the crystal, inversion dimers linked by pairs of double-acceptor (C—H)2⋯O hydrogen bonds are seen. Further C—H⋯O inter­actions link the dimers into (010) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Two polymorphic forms of 3-acetyl coumarin have been reported in the literature (Munshi et al., 2004[Munshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105-1107.]; Munshi & Guru Row, 2006[Munshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708-718.]). In both cases, weak C—H⋯O hydrogen bonds are the structure-directing inter­actions. Halogen-substituted 3-acetyl coumarin derivatives (Chopra et al., 2006[Chopra, D., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2006). Acta Cryst. E62, o2310-o2312.], 2007a[Chopra, D., Venugopala, K. N. & Rao, G. K. (2007a). Acta Cryst. E63, o4872.],b[Chopra, D., Venugopala, K. N., Rao, G. K. & Guru Row, T. N. (2007b). Acta Cryst. E63, o2826.]) have also been described.

In the title compound, the benzo­pyran ring system is essentially planar (r.m.s. deviation = 0.023 Å) and one of the bromine atoms is almost coplanar with it [deviation = 0.091 (1) Å] (Fig. 1[link]). In the crystal, inversion dimers linked by pairs of double-acceptor (C—H)2⋯O hydrogen bonds are seen (Table 1[link]). Further C—H⋯O inter­actions link the dimers into (010) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.94 (2) 2.41 (2) 3.238 (3) 147.9 (19)
C5—H5⋯O3i 0.85 (2) 2.59 (2) 3.299 (3) 142.0 (19)
C11—H11⋯O2ii 0.94 (2) 2.46 (2) 3.283 (4) 147.0 (17)
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Synthesis and crystallization

3-Acetyl-6-chloro-2H-1-benzo­pyran-2-one (222 mg, 1 mmol) was dissolved in chloro­form (5 ml) and 4.0 ml chloro­form containing 347.6 mg bromine was added to it with inter­mittent shaking and warming. The mixture was heated for 15 min on a water bath, cooled and filtered. The solid was washed with ether and recrystallized from glacial acetic acid solution at room temperature to yield yellow plates of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H5Br2ClO3
Mr 380.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.9086 (16), 6.7115 (10), 22.640 (3)
β (°) 96.744 (16)
V3) 1193.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.01
Crystal size (mm) 0.51 × 0.15 × 0.09
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos, Nova
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.124, 0.571
No. of measured, independent and observed [I > 2σ(I)] reflections 19365, 4065, 1989
Rint 0.053
(sin θ/λ)max−1) 0.765
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.074, 0.82
No. of reflections 4065
No. of parameters 174
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.48, −0.86
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: CrysAlis PRO (Oxford Diffraction, 2009; program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-Chloro-3-(2,2-dibromoacetyl)-2H-chromen-2-one top
Crystal data top
C11H5Br2ClO3F(000) = 728
Mr = 380.42Dx = 2.117 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9086 (16) ÅCell parameters from 2350 reflections
b = 6.7115 (10) Åθ = 3.2–26.0°
c = 22.640 (3) ŵ = 7.01 mm1
β = 96.744 (16)°T = 293 K
V = 1193.4 (3) Å3Plate, metallic light yellow
Z = 40.51 × 0.15 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur, Eos, Nova
diffractometer
4065 independent reflections
Radiation source: sealed tube, Incoatec Iµs1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8 pixels mm-1θmax = 33.0°, θmin = 3.2°
ω and φ scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.124, Tmax = 0.571l = 3333
19365 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
4065 reflectionsΔρmax = 0.48 e Å3
174 parametersΔρmin = 0.86 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40623 (4)0.46632 (4)0.16129 (2)0.04633 (10)
Br20.32549 (5)0.02781 (5)0.20266 (2)0.06416 (12)
Cl10.82997 (11)0.81238 (11)0.03885 (4)0.0587 (2)
O10.8448 (2)0.3098 (3)0.17211 (7)0.0434 (5)
O20.7652 (3)0.0538 (3)0.22160 (9)0.0742 (8)
O30.4892 (3)0.1777 (2)0.06963 (7)0.0450 (5)
C10.7507 (4)0.1378 (4)0.17503 (12)0.0415 (7)
C20.6475 (3)0.0758 (3)0.12046 (10)0.0300 (6)
C30.6492 (3)0.1857 (3)0.07073 (11)0.0312 (6)
C40.7432 (3)0.3664 (3)0.06950 (10)0.0304 (6)
C50.7427 (3)0.4869 (4)0.01960 (12)0.0370 (6)
C60.8356 (3)0.6603 (4)0.02339 (12)0.0393 (7)
C70.9292 (4)0.7169 (4)0.07625 (13)0.0470 (8)
C80.9309 (4)0.5995 (4)0.12582 (14)0.0460 (7)
C90.8380 (3)0.4255 (4)0.12192 (11)0.0364 (6)
C100.5405 (3)0.1082 (4)0.11729 (11)0.0321 (6)
C110.4948 (4)0.2029 (4)0.17427 (11)0.0350 (6)
H30.578 (3)0.149 (3)0.0364 (11)0.039 (7)*
H50.685 (3)0.460 (3)0.0136 (11)0.037 (8)*
H70.992 (3)0.830 (4)0.0772 (10)0.038 (7)*
H80.988 (3)0.629 (3)0.1616 (11)0.034 (7)*
H110.585 (3)0.220 (3)0.2045 (11)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05146 (19)0.04012 (15)0.04839 (17)0.00928 (13)0.00999 (14)0.00593 (12)
Br20.0737 (3)0.0622 (2)0.0621 (2)0.00668 (17)0.03098 (18)0.01290 (16)
Cl10.0587 (5)0.0499 (4)0.0673 (5)0.0148 (4)0.0059 (4)0.0200 (4)
O10.0493 (13)0.0465 (10)0.0314 (10)0.0138 (9)0.0086 (9)0.0023 (8)
O20.102 (2)0.0750 (15)0.0362 (12)0.0414 (14)0.0306 (13)0.0174 (11)
O30.0661 (14)0.0427 (10)0.0245 (10)0.0197 (9)0.0024 (9)0.0030 (8)
C10.0472 (18)0.0416 (15)0.0326 (15)0.0095 (13)0.0077 (13)0.0001 (12)
C20.0347 (15)0.0317 (13)0.0226 (12)0.0016 (11)0.0011 (11)0.0021 (10)
C30.0323 (15)0.0357 (13)0.0247 (13)0.0040 (11)0.0005 (11)0.0051 (11)
C40.0294 (14)0.0338 (13)0.0275 (13)0.0029 (11)0.0010 (11)0.0032 (10)
C50.0346 (15)0.0396 (15)0.0359 (15)0.0046 (12)0.0007 (12)0.0000 (12)
C60.0355 (17)0.0361 (14)0.0482 (17)0.0040 (12)0.0122 (13)0.0047 (12)
C70.0395 (18)0.0386 (16)0.062 (2)0.0150 (13)0.0029 (15)0.0036 (14)
C80.0425 (19)0.0425 (15)0.0498 (19)0.0116 (13)0.0076 (15)0.0057 (14)
C90.0321 (15)0.0381 (14)0.0384 (15)0.0038 (11)0.0020 (12)0.0024 (12)
C100.0348 (15)0.0354 (13)0.0258 (13)0.0017 (11)0.0018 (11)0.0013 (11)
C110.0386 (17)0.0380 (14)0.0278 (13)0.0045 (12)0.0007 (12)0.0022 (11)
Geometric parameters (Å, º) top
Br1—C111.912 (2)C4—C51.389 (3)
Br2—C111.947 (3)C4—C91.385 (3)
Cl1—C61.736 (3)C5—C61.374 (3)
O1—C11.379 (3)C5—H50.85 (2)
O1—C91.372 (3)C6—C71.385 (4)
O2—C11.189 (3)C7—C81.370 (4)
O3—C101.202 (3)C7—H70.90 (2)
C1—C21.459 (3)C8—C91.377 (4)
C2—C31.347 (3)C8—H80.90 (2)
C2—C101.494 (3)C10—C111.519 (3)
C3—C41.424 (3)C11—H110.93 (3)
C3—H30.94 (2)
C9—O1—C1122.99 (19)C6—C7—H7119.0 (15)
O1—C1—C2116.7 (2)C8—C7—C6120.2 (3)
O2—C1—O1116.3 (2)C8—C7—H7120.8 (15)
O2—C1—C2127.0 (2)C7—C8—C9118.8 (3)
C1—C2—C10122.3 (2)C7—C8—H8124.3 (15)
C3—C2—C1119.5 (2)C9—C8—H8116.9 (15)
C3—C2—C10118.3 (2)O1—C9—C4120.8 (2)
C2—C3—C4122.6 (2)O1—C9—C8117.3 (2)
C2—C3—H3119.0 (15)C8—C9—C4121.9 (3)
C4—C3—H3118.1 (15)O3—C10—C2119.6 (2)
C5—C4—C3124.1 (2)O3—C10—C11120.8 (2)
C9—C4—C3117.3 (2)C2—C10—C11119.7 (2)
C9—C4—C5118.7 (2)Br1—C11—Br2110.81 (14)
C4—C5—H5122.8 (17)Br1—C11—H11103.7 (14)
C6—C5—C4119.5 (2)Br2—C11—H11109.0 (15)
C6—C5—H5117.7 (17)C10—C11—Br1112.07 (17)
C5—C6—Cl1119.0 (2)C10—C11—Br2105.61 (16)
C5—C6—C7120.9 (2)C10—C11—H11115.8 (16)
C7—C6—Cl1120.0 (2)
Cl1—C6—C7—C8178.6 (2)C3—C2—C10—C11162.8 (2)
O1—C1—C2—C30.4 (4)C3—C4—C5—C6178.8 (3)
O1—C1—C2—C10179.6 (2)C3—C4—C9—O12.2 (4)
O2—C1—C2—C3178.0 (3)C3—C4—C9—C8178.8 (3)
O2—C1—C2—C101.2 (5)C4—C5—C6—Cl1178.5 (2)
O3—C10—C11—Br115.3 (3)C4—C5—C6—C70.1 (4)
O3—C10—C11—Br2105.4 (2)C5—C4—C9—O1178.9 (2)
C1—O1—C9—C44.5 (4)C5—C4—C9—C80.1 (4)
C1—O1—C9—C8176.4 (3)C5—C6—C7—C80.2 (4)
C1—C2—C3—C42.6 (4)C6—C7—C8—C90.1 (4)
C1—C2—C10—O3163.2 (3)C7—C8—C9—O1179.0 (3)
C1—C2—C10—C1118.0 (4)C7—C8—C9—C40.1 (4)
C2—C3—C4—C5177.5 (3)C9—O1—C1—O2178.3 (3)
C2—C3—C4—C91.4 (4)C9—O1—C1—C23.2 (4)
C2—C10—C11—Br1165.94 (19)C9—C4—C5—C60.0 (4)
C2—C10—C11—Br273.3 (3)C10—C2—C3—C4178.2 (2)
C3—C2—C10—O316.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.94 (2)2.41 (2)3.238 (3)147.9 (19)
C5—H5···O3i0.85 (2)2.59 (2)3.299 (3)142.0 (19)
C11—H11···O2ii0.94 (2)2.46 (2)3.283 (4)147.0 (17)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Indian Institute of Science, Bangalore, for scientific discussions and the data collection.

References

First citationChopra, D., Venugopala, K. N. & Rao, G. K. (2007a). Acta Cryst. E63, o4872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChopra, D., Venugopala, K. N., Rao, G. K. & Guru Row, T. N. (2007b). Acta Cryst. E63, o2826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChopra, D., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2006). Acta Cryst. E62, o2310–o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105–1107.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds