organic compounds
cis-[3-(2-Chloro-6-methylquinolin-3-yl)oxiran-2-yl](p-tolyl)methanone
aP.G. Department of Chemistry, Centre for Post Graduation Studies, Jain University, 3rd Block, Jayanagar, Bangalore 560 011, Karnataka, India, bSolid state and Structural Chemistry Unit, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560 012, Karnataka, India, cP.G. Department of Chemistry, Centre for Post Graduation Studies, Jain, University, 3rd Block, Jayanagar, Bangalore 560 011, Karnataka, India, and dSolid state and Structural Chemistry Unit, Indian Institute of Science, C.V., Raman Avenue, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: praveena.molecularconnection@gmail.com
In the title compound, C20H16ClNO2, the dihedral angle between the quinolyl ring system and the p-tolyl ring is 65.80 (7)°. The rings are bridged by a functionalized epoxide system, with the exocyclic bonds in a cis configuration. In the crystal, weak C—H⋯O and C—H⋯Cl interactions link the molecules into [100] chains.
Keywords: crystal structure; synthesis; hydrogen bonding; supramolecular chemistry.
CCDC reference: 1477410
Structure description
The synthesis and pharmacological properties of quinolinyl epoxy et al., 2015). 2-Chloroquinoline-3-carbaldehydes have not been exploited for Darzens condensations, a powerful procedure for the formation of a carbon–carbon bond with a simultaneous generation of epoxy function group next to the keto or ester function, except for one report (Boulcina et al., 2008) that describes the synthesis of a few quinolinyl epoxy under stronger conditions and much longer duration, with modest yields of products. The structure of a related quinoline derivative was reported by the same workers (Boulcina et al., 2007). Here we report the synthesis and of the title compound (Fig. 1).
have been reported by us recently (PreveenaThe dihedral angle between the quinoline ring system and the p-tolyl ring is 65.80 (7)°. The conformation about the epoxide group is cis. There are two types of weak intermolecular hydrogen-bonding interactions in the crystal: C5—H5⋯Cl1 and C12—H12⋯O2 (Table 1). Together, these lead to [100] chains in the (Fig. 2).
Synthesis and crystallization
1.0 g (4.86 mmol) of 2-chloro-6-methylquinoline-3-carbaldehyde was dissolved in DMF (4 ml); to this was added 1.25 g (5.86 mmol) of 2-bromo-1-p-tolylethanone and 0.20 g (1.45 mmol) of K2CO3 and was stirred at room temperature for about 6 h. The progress of reaction was periodically monitored by TLC. At the end of the reaction, the mixture was added to crushed ice and the precipitate obtained was filtered and purified by on silica gel using a petroleum ether–ethyl acetate mixture (96:4) as eluting solvent to obtain the title compound (Preveena et al., 2015) in 88% yield. Colourless blocks were recrystallized from ethyl acetate solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1477410
https://doi.org/10.1107/S2414314617004345/hb4122sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617004345/hb4122Isup2.hkl
abstract and crystal data. DOI: https://doi.org/10.1107/S2414314617004345/hb4122sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617004345/hb4122Isup4.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H16ClNO2 | Z = 2 |
Mr = 337.79 | F(000) = 352 |
Triclinic, P1 | Dx = 1.355 Mg m−3 |
a = 7.412 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.963 (4) Å | Cell parameters from 5696 reflections |
c = 11.070 (4) Å | θ = 2.3–27.1° |
α = 105.124 (18)° | µ = 0.24 mm−1 |
β = 95.633 (18)° | T = 298 K |
γ = 104.398 (17)° | Block, clear light colourless |
V = 828.2 (5) Å3 | 0.25 × 0.24 × 0.23 mm |
Bruker SMART APEXII CCD diffractometer | 2880 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 2411 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.045 |
Detector resolution: 7.9 pixels mm-1 | θmax = 25.0°, θmin = 1.9° |
ω and φ scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −13→13 |
Tmin = 0.686, Tmax = 0.746 | l = −13→13 |
11538 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.124 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1667P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2880 reflections | Δρmax = 0.23 e Å−3 |
219 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.14999 (6) | 0.54946 (5) | 0.24404 (5) | 0.0599 (2) | |
O1 | 0.38544 (19) | 0.45396 (13) | 0.34241 (13) | 0.0574 (4) | |
O2 | 0.58876 (19) | 0.71396 (15) | 0.45887 (14) | 0.0631 (4) | |
N1 | 0.0398 (2) | 0.66501 (15) | 0.10097 (14) | 0.0472 (4) | |
C1 | 0.6831 (3) | 0.8368 (3) | −0.1198 (2) | 0.0716 (6) | |
H1A | 0.7900 | 0.8139 | −0.0859 | 0.107* | |
H1B | 0.7136 | 0.9308 | −0.1020 | 0.107* | |
H1C | 0.6520 | 0.7961 | −0.2101 | 0.107* | |
C2 | 0.5166 (3) | 0.7893 (2) | −0.05940 (18) | 0.0526 (5) | |
C3 | 0.5226 (3) | 0.7133 (2) | 0.01956 (18) | 0.0499 (5) | |
H3 | 0.6322 | 0.6895 | 0.0365 | 0.060* | |
C4 | 0.3657 (2) | 0.66963 (18) | 0.07658 (16) | 0.0435 (4) | |
C5 | 0.3670 (3) | 0.59374 (18) | 0.16096 (17) | 0.0463 (5) | |
H5 | 0.4748 | 0.5690 | 0.1809 | 0.056* | |
C6 | 0.2119 (2) | 0.55591 (17) | 0.21394 (16) | 0.0433 (4) | |
C7 | 0.2094 (3) | 0.47792 (18) | 0.30524 (18) | 0.0488 (5) | |
H7 | 0.0948 | 0.4052 | 0.2931 | 0.059* | |
C8 | 0.3164 (3) | 0.53792 (19) | 0.43619 (18) | 0.0478 (4) | |
H8 | 0.2644 | 0.5009 | 0.5012 | 0.057* | |
C9 | 0.4290 (2) | 0.68091 (19) | 0.48030 (16) | 0.0456 (4) | |
C10 | 0.3345 (2) | 0.77642 (18) | 0.54584 (16) | 0.0443 (4) | |
C11 | 0.1419 (3) | 0.7400 (2) | 0.54987 (19) | 0.0531 (5) | |
H11 | 0.0717 | 0.6520 | 0.5161 | 0.064* | |
C12 | 0.0542 (3) | 0.8326 (2) | 0.6033 (2) | 0.0584 (5) | |
H12 | −0.0749 | 0.8064 | 0.6043 | 0.070* | |
C13 | 0.1545 (3) | 0.9635 (2) | 0.65515 (19) | 0.0571 (5) | |
C14 | 0.0577 (4) | 1.0655 (3) | 0.7101 (3) | 0.0872 (8) | |
H14A | −0.0707 | 1.0386 | 0.6664 | 0.131* | |
H14B | 0.1231 | 1.1486 | 0.7000 | 0.131* | |
H14C | 0.0588 | 1.0745 | 0.7988 | 0.131* | |
C15 | 0.3474 (3) | 0.8234 (2) | −0.0848 (2) | 0.0593 (5) | |
H15 | 0.3415 | 0.8753 | −0.1387 | 0.071* | |
C16 | 0.1942 (3) | 0.7824 (2) | −0.0326 (2) | 0.0559 (5) | |
H16 | 0.0852 | 0.8062 | −0.0516 | 0.067* | |
C17 | 0.1976 (2) | 0.70482 (18) | 0.04924 (16) | 0.0446 (4) | |
C18 | 0.0518 (2) | 0.59602 (18) | 0.17794 (17) | 0.0434 (4) | |
C19 | 0.3476 (3) | 0.9993 (2) | 0.6530 (2) | 0.0618 (6) | |
H19 | 0.4181 | 1.0870 | 0.6888 | 0.074* | |
C20 | 0.4360 (3) | 0.9079 (2) | 0.59925 (18) | 0.0545 (5) | |
H20 | 0.5652 | 0.9343 | 0.5986 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0448 (3) | 0.0745 (4) | 0.0624 (4) | 0.0206 (2) | 0.0093 (2) | 0.0201 (3) |
O1 | 0.0665 (9) | 0.0583 (8) | 0.0578 (8) | 0.0356 (7) | 0.0060 (7) | 0.0199 (7) |
O2 | 0.0465 (8) | 0.0728 (10) | 0.0708 (10) | 0.0140 (7) | 0.0126 (7) | 0.0245 (8) |
N1 | 0.0433 (8) | 0.0526 (9) | 0.0473 (9) | 0.0246 (7) | 0.0020 (7) | 0.0091 (7) |
C1 | 0.0675 (14) | 0.0770 (16) | 0.0745 (16) | 0.0218 (12) | 0.0203 (12) | 0.0256 (13) |
C2 | 0.0541 (11) | 0.0539 (11) | 0.0479 (11) | 0.0185 (9) | 0.0065 (9) | 0.0098 (9) |
C3 | 0.0438 (10) | 0.0571 (12) | 0.0470 (11) | 0.0224 (9) | 0.0017 (8) | 0.0072 (9) |
C4 | 0.0433 (9) | 0.0456 (10) | 0.0391 (9) | 0.0192 (8) | −0.0001 (7) | 0.0046 (8) |
C5 | 0.0452 (10) | 0.0510 (11) | 0.0445 (10) | 0.0253 (8) | −0.0016 (8) | 0.0095 (8) |
C6 | 0.0443 (9) | 0.0426 (10) | 0.0402 (9) | 0.0181 (8) | −0.0003 (7) | 0.0049 (8) |
C7 | 0.0509 (10) | 0.0428 (10) | 0.0537 (11) | 0.0189 (8) | 0.0046 (9) | 0.0126 (9) |
C8 | 0.0512 (10) | 0.0514 (11) | 0.0486 (10) | 0.0215 (8) | 0.0091 (8) | 0.0215 (9) |
C9 | 0.0452 (10) | 0.0540 (11) | 0.0400 (10) | 0.0135 (8) | 0.0014 (8) | 0.0207 (8) |
C10 | 0.0472 (10) | 0.0479 (10) | 0.0369 (9) | 0.0085 (8) | 0.0037 (7) | 0.0172 (8) |
C11 | 0.0467 (10) | 0.0474 (11) | 0.0558 (11) | 0.0057 (8) | 0.0043 (9) | 0.0083 (9) |
C12 | 0.0478 (11) | 0.0585 (12) | 0.0612 (12) | 0.0131 (9) | 0.0070 (9) | 0.0078 (10) |
C13 | 0.0729 (13) | 0.0545 (12) | 0.0457 (11) | 0.0226 (10) | 0.0093 (10) | 0.0141 (9) |
C14 | 0.104 (2) | 0.0712 (16) | 0.0887 (19) | 0.0398 (15) | 0.0215 (16) | 0.0124 (14) |
C15 | 0.0676 (13) | 0.0622 (13) | 0.0564 (12) | 0.0282 (11) | 0.0072 (10) | 0.0236 (10) |
C16 | 0.0566 (11) | 0.0626 (13) | 0.0586 (12) | 0.0331 (10) | 0.0047 (9) | 0.0215 (10) |
C17 | 0.0455 (10) | 0.0466 (10) | 0.0407 (10) | 0.0226 (8) | −0.0006 (8) | 0.0051 (8) |
C18 | 0.0411 (9) | 0.0439 (10) | 0.0407 (9) | 0.0162 (8) | 0.0006 (7) | 0.0035 (8) |
C19 | 0.0773 (15) | 0.0419 (11) | 0.0585 (13) | 0.0035 (10) | 0.0129 (11) | 0.0142 (9) |
C20 | 0.0550 (11) | 0.0528 (12) | 0.0512 (11) | 0.0027 (9) | 0.0109 (9) | 0.0193 (9) |
Cl1—C18 | 1.750 (2) | C8—H8 | 0.9800 |
O1—C7 | 1.436 (2) | C8—C9 | 1.504 (3) |
O1—C8 | 1.424 (2) | C9—C10 | 1.477 (3) |
O2—C9 | 1.215 (2) | C10—C11 | 1.392 (3) |
N1—C17 | 1.376 (2) | C10—C20 | 1.386 (3) |
N1—C18 | 1.289 (2) | C11—H11 | 0.9300 |
C1—H1A | 0.9600 | C11—C12 | 1.376 (3) |
C1—H1B | 0.9600 | C12—H12 | 0.9300 |
C1—H1C | 0.9600 | C12—C13 | 1.377 (3) |
C1—C2 | 1.506 (3) | C13—C14 | 1.506 (3) |
C2—C3 | 1.361 (3) | C13—C19 | 1.391 (3) |
C2—C15 | 1.417 (3) | C14—H14A | 0.9600 |
C3—H3 | 0.9300 | C14—H14B | 0.9600 |
C3—C4 | 1.416 (3) | C14—H14C | 0.9600 |
C4—C5 | 1.405 (3) | C15—H15 | 0.9300 |
C4—C17 | 1.420 (2) | C15—C16 | 1.355 (3) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C5—C6 | 1.364 (3) | C16—C17 | 1.398 (3) |
C6—C7 | 1.483 (3) | C19—H19 | 0.9300 |
C6—C18 | 1.421 (2) | C19—C20 | 1.371 (3) |
C7—H7 | 0.9800 | C20—H20 | 0.9300 |
C7—C8 | 1.476 (3) | ||
C8—O1—C7 | 62.16 (12) | C10—C9—C8 | 117.05 (16) |
C18—N1—C17 | 117.07 (15) | C11—C10—C9 | 121.83 (16) |
H1A—C1—H1B | 109.5 | C20—C10—C9 | 119.83 (17) |
H1A—C1—H1C | 109.5 | C20—C10—C11 | 118.24 (18) |
H1B—C1—H1C | 109.5 | C10—C11—H11 | 119.6 |
C2—C1—H1A | 109.5 | C12—C11—C10 | 120.79 (18) |
C2—C1—H1B | 109.5 | C12—C11—H11 | 119.6 |
C2—C1—H1C | 109.5 | C11—C12—H12 | 119.5 |
C3—C2—C1 | 121.85 (19) | C11—C12—C13 | 121.02 (19) |
C3—C2—C15 | 118.32 (19) | C13—C12—H12 | 119.5 |
C15—C2—C1 | 119.8 (2) | C12—C13—C14 | 121.1 (2) |
C2—C3—H3 | 119.2 | C12—C13—C19 | 118.09 (19) |
C2—C3—C4 | 121.51 (17) | C19—C13—C14 | 120.8 (2) |
C4—C3—H3 | 119.2 | C13—C14—H14A | 109.5 |
C3—C4—C17 | 119.07 (17) | C13—C14—H14B | 109.5 |
C5—C4—C3 | 123.48 (16) | C13—C14—H14C | 109.5 |
C5—C4—C17 | 117.45 (17) | H14A—C14—H14B | 109.5 |
C4—C5—H5 | 119.6 | H14A—C14—H14C | 109.5 |
C6—C5—C4 | 120.71 (16) | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 119.6 | C2—C15—H15 | 119.2 |
C5—C6—C7 | 122.20 (16) | C16—C15—C2 | 121.7 (2) |
C5—C6—C18 | 116.50 (17) | C16—C15—H15 | 119.2 |
C18—C6—C7 | 121.30 (17) | C15—C16—H16 | 119.5 |
O1—C7—C6 | 115.74 (16) | C15—C16—C17 | 120.95 (18) |
O1—C7—H7 | 116.2 | C17—C16—H16 | 119.5 |
O1—C7—C8 | 58.52 (12) | N1—C17—C4 | 121.97 (17) |
C6—C7—H7 | 116.2 | N1—C17—C16 | 119.55 (16) |
C8—C7—C6 | 121.17 (16) | C16—C17—C4 | 118.47 (18) |
C8—C7—H7 | 116.2 | N1—C18—Cl1 | 115.87 (13) |
O1—C8—C7 | 59.32 (12) | N1—C18—C6 | 126.28 (18) |
O1—C8—H8 | 116.4 | C6—C18—Cl1 | 117.85 (15) |
O1—C8—C9 | 115.69 (16) | C13—C19—H19 | 119.3 |
C7—C8—H8 | 116.4 | C20—C19—C13 | 121.31 (19) |
C7—C8—C9 | 120.34 (16) | C20—C19—H19 | 119.3 |
C9—C8—H8 | 116.4 | C10—C20—H20 | 119.7 |
O2—C9—C8 | 120.14 (17) | C19—C20—C10 | 120.54 (19) |
O2—C9—C10 | 122.79 (17) | C19—C20—H20 | 119.7 |
O1—C7—C8—C9 | 103.70 (19) | C7—C6—C18—N1 | 179.09 (17) |
O1—C8—C9—O2 | −16.3 (2) | C7—C8—C9—O2 | −84.3 (2) |
O1—C8—C9—C10 | 161.95 (14) | C7—C8—C9—C10 | 93.9 (2) |
O2—C9—C10—C11 | 168.50 (18) | C8—O1—C7—C6 | 112.25 (18) |
O2—C9—C10—C20 | −7.9 (3) | C8—C9—C10—C11 | −9.7 (2) |
C1—C2—C3—C4 | 179.65 (18) | C8—C9—C10—C20 | 173.97 (16) |
C1—C2—C15—C16 | 179.8 (2) | C9—C10—C11—C12 | −175.15 (17) |
C2—C3—C4—C5 | −178.43 (17) | C9—C10—C20—C19 | 175.67 (17) |
C2—C3—C4—C17 | 0.8 (3) | C10—C11—C12—C13 | −0.6 (3) |
C2—C15—C16—C17 | 0.3 (3) | C11—C10—C20—C19 | −0.8 (3) |
C3—C2—C15—C16 | 0.0 (3) | C11—C12—C13—C14 | 178.1 (2) |
C3—C4—C5—C6 | 179.25 (16) | C11—C12—C13—C19 | −0.5 (3) |
C3—C4—C17—N1 | 179.65 (16) | C12—C13—C19—C20 | 1.0 (3) |
C3—C4—C17—C16 | −0.4 (3) | C13—C19—C20—C10 | −0.3 (3) |
C4—C5—C6—C7 | −178.83 (16) | C14—C13—C19—C20 | −177.7 (2) |
C4—C5—C6—C18 | 0.7 (3) | C15—C2—C3—C4 | −0.6 (3) |
C5—C4—C17—N1 | −1.1 (3) | C15—C16—C17—N1 | 179.83 (18) |
C5—C4—C17—C16 | 178.81 (16) | C15—C16—C17—C4 | −0.1 (3) |
C5—C6—C7—O1 | 4.9 (2) | C17—N1—C18—Cl1 | 178.95 (12) |
C5—C6—C7—C8 | 72.2 (2) | C17—N1—C18—C6 | −0.6 (3) |
C5—C6—C18—Cl1 | −179.95 (13) | C17—C4—C5—C6 | 0.0 (3) |
C5—C6—C18—N1 | −0.4 (3) | C18—N1—C17—C4 | 1.3 (3) |
C6—C7—C8—O1 | −102.98 (19) | C18—N1—C17—C16 | −178.55 (16) |
C6—C7—C8—C9 | 0.7 (3) | C18—C6—C7—O1 | −174.58 (15) |
C7—O1—C8—C9 | −111.49 (18) | C18—C6—C7—C8 | −107.3 (2) |
C7—C6—C18—Cl1 | −0.4 (2) | C20—C10—C11—C12 | 1.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cl1i | 0.93 | 2.87 | 3.788 (2) | 168 |
C12—H12···O2ii | 0.93 | 2.63 | 3.426 (3) | 144 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
The authors are thankful to the authorities of Jain University for their encouragement and financial support for this work, and the Department of Solid State Chemistry, Indian Institute of Science, for the facility provided to record crystal data.
References
Boulcina, R., Belfaitah, A., Rhouati, S. & Debache, A. (2008). J. Soc. Alger. Chim, 18, 61–70. CAS Google Scholar
Boulcina, R., Bouacida, S., Roisnel, T. & Debache, A. (2007). Acta Cryst. E63, o3795–o3796. CSD CrossRef IUCr Journals Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Preveena, N., Nagendrappa, G., Suresha Kumara, T. H., Tiwari, A. K., Chaithanya, M. S., Nagananda, G. S., Sujan Ganapathy, P. S., Guru Row, T. N., Amar, A. H. & Chethana, P. R. (2015). Int. J. Phar. Sci. Inv. 4, 53–76. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.