organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-[3-(2-Chloro-6-methyl­quinolin-3-yl)oxiran-2-yl](p-tol­yl)methanone

CROSSMARK_Color_square_no_text.svg

aP.G. Department of Chemistry, Centre for Post Graduation Studies, Jain University, 3rd Block, Jayanagar, Bangalore 560 011, Karnataka, India, bSolid state and Structural Chemistry Unit, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560 012, Karnataka, India, cP.G. Department of Chemistry, Centre for Post Graduation Studies, Jain, University, 3rd Block, Jayanagar, Bangalore 560 011, Karnataka, India, and dSolid state and Structural Chemistry Unit, Indian Institute of Science, C.V., Raman Avenue, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: praveena.molecularconnection@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 February 2017; accepted 18 March 2017; online 24 March 2017)

In the title compound, C20H16ClNO2, the dihedral angle between the quinolyl ring system and the p-tolyl ring is 65.80 (7)°. The rings are bridged by a functionalized epoxide system, with the exocyclic bonds in a cis configuration. In the crystal, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules into [100] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis and pharmacological properties of quinolinyl ep­oxy ketones have been reported by us recently (Preveena et al., 2015[Preveena, N., Nagendrappa, G., Suresha Kumara, T. H., Tiwari, A. K., Chaithanya, M. S., Nagananda, G. S., Sujan Ganapathy, P. S., Guru Row, T. N., Amar, A. H. & Chethana, P. R. (2015). Int. J. Phar. Sci. Inv. 4, 53-76.]). 2-Chloro­quinoline-3-carbaldehydes have not been exploited for Darzens condensations, a powerful procedure for the formation of a carbon–carbon bond with a simultaneous generation of ep­oxy function group next to the keto or ester function, except for one report (Boulcina et al., 2008[Boulcina, R., Belfaitah, A., Rhouati, S. & Debache, A. (2008). J. Soc. Alger. Chim, 18, 61-70.]) that describes the synthesis of a few quinolinyl ep­oxy ketones under stronger conditions and much longer duration, with modest yields of products. The structure of a related quinoline derivative was reported by the same workers (Boulcina et al., 2007[Boulcina, R., Bouacida, S., Roisnel, T. & Debache, A. (2007). Acta Cryst. E63, o3795-o3796.]). Here we report the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

The dihedral angle between the quinoline ring system and the p-tolyl ring is 65.80 (7)°. The conformation about the epoxide group is cis. There are two types of weak inter­molecular hydrogen-bonding inter­actions in the crystal: C5—H5⋯Cl1 and C12—H12⋯O2 (Table 1[link]). Together, these lead to [100] chains in the (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.93 2.87 3.788 (2) 168
C12—H12⋯O2ii 0.93 2.63 3.426 (3) 144
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 2]
Figure 2
Fragment of the crystal structure of the title compound, showing the formation of the [100] chains.

Synthesis and crystallization

1.0 g (4.86 mmol) of 2-chloro-6-methyl­quinoline-3-carbaldehyde was dissolved in DMF (4 ml); to this was added 1.25 g (5.86 mmol) of 2-bromo-1-p-tolyl­ethanone and 0.20 g (1.45 mmol) of K2CO3 and was stirred at room temperature for about 6 h. The progress of reaction was periodically monitored by TLC. At the end of the reaction, the mixture was added to crushed ice and the precipitate obtained was filtered and purified by column chromatography on silica gel using a petroleum ether–ethyl acetate mixture (96:4) as eluting solvent to obtain the title compound (Preveena et al., 2015[Preveena, N., Nagendrappa, G., Suresha Kumara, T. H., Tiwari, A. K., Chaithanya, M. S., Nagananda, G. S., Sujan Ganapathy, P. S., Guru Row, T. N., Amar, A. H. & Chethana, P. R. (2015). Int. J. Phar. Sci. Inv. 4, 53-76.]) in 88% yield. Colourless blocks were recrystallized from ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H16ClNO2
Mr 337.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 7.412 (2), 10.963 (4), 11.070 (4)
α, β, γ (°) 105.124 (18), 95.633 (18), 104.398 (17)
V3) 828.2 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.25 × 0.24 × 0.23
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11538, 2880, 2411
Rint 0.045
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.13
No. of reflections 2880
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

cis-[3-(2-Chloro-6-methylquinolin-3-yl)oxiran-2-yl](p-tolyl)methanone top
Crystal data top
C20H16ClNO2Z = 2
Mr = 337.79F(000) = 352
Triclinic, P1Dx = 1.355 Mg m3
a = 7.412 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.963 (4) ÅCell parameters from 5696 reflections
c = 11.070 (4) Åθ = 2.3–27.1°
α = 105.124 (18)°µ = 0.24 mm1
β = 95.633 (18)°T = 298 K
γ = 104.398 (17)°Block, clear light colourless
V = 828.2 (5) Å30.25 × 0.24 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2880 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2411 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.045
Detector resolution: 7.9 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.686, Tmax = 0.746l = 1313
11538 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1667P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2880 reflectionsΔρmax = 0.23 e Å3
219 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14999 (6)0.54946 (5)0.24404 (5)0.0599 (2)
O10.38544 (19)0.45396 (13)0.34241 (13)0.0574 (4)
O20.58876 (19)0.71396 (15)0.45887 (14)0.0631 (4)
N10.0398 (2)0.66501 (15)0.10097 (14)0.0472 (4)
C10.6831 (3)0.8368 (3)0.1198 (2)0.0716 (6)
H1A0.79000.81390.08590.107*
H1B0.71360.93080.10200.107*
H1C0.65200.79610.21010.107*
C20.5166 (3)0.7893 (2)0.05940 (18)0.0526 (5)
C30.5226 (3)0.7133 (2)0.01956 (18)0.0499 (5)
H30.63220.68950.03650.060*
C40.3657 (2)0.66963 (18)0.07658 (16)0.0435 (4)
C50.3670 (3)0.59374 (18)0.16096 (17)0.0463 (5)
H50.47480.56900.18090.056*
C60.2119 (2)0.55591 (17)0.21394 (16)0.0433 (4)
C70.2094 (3)0.47792 (18)0.30524 (18)0.0488 (5)
H70.09480.40520.29310.059*
C80.3164 (3)0.53792 (19)0.43619 (18)0.0478 (4)
H80.26440.50090.50120.057*
C90.4290 (2)0.68091 (19)0.48030 (16)0.0456 (4)
C100.3345 (2)0.77642 (18)0.54584 (16)0.0443 (4)
C110.1419 (3)0.7400 (2)0.54987 (19)0.0531 (5)
H110.07170.65200.51610.064*
C120.0542 (3)0.8326 (2)0.6033 (2)0.0584 (5)
H120.07490.80640.60430.070*
C130.1545 (3)0.9635 (2)0.65515 (19)0.0571 (5)
C140.0577 (4)1.0655 (3)0.7101 (3)0.0872 (8)
H14A0.07071.03860.66640.131*
H14B0.12311.14860.70000.131*
H14C0.05881.07450.79880.131*
C150.3474 (3)0.8234 (2)0.0848 (2)0.0593 (5)
H150.34150.87530.13870.071*
C160.1942 (3)0.7824 (2)0.0326 (2)0.0559 (5)
H160.08520.80620.05160.067*
C170.1976 (2)0.70482 (18)0.04924 (16)0.0446 (4)
C180.0518 (2)0.59602 (18)0.17794 (17)0.0434 (4)
C190.3476 (3)0.9993 (2)0.6530 (2)0.0618 (6)
H190.41811.08700.68880.074*
C200.4360 (3)0.9079 (2)0.59925 (18)0.0545 (5)
H200.56520.93430.59860.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0448 (3)0.0745 (4)0.0624 (4)0.0206 (2)0.0093 (2)0.0201 (3)
O10.0665 (9)0.0583 (8)0.0578 (8)0.0356 (7)0.0060 (7)0.0199 (7)
O20.0465 (8)0.0728 (10)0.0708 (10)0.0140 (7)0.0126 (7)0.0245 (8)
N10.0433 (8)0.0526 (9)0.0473 (9)0.0246 (7)0.0020 (7)0.0091 (7)
C10.0675 (14)0.0770 (16)0.0745 (16)0.0218 (12)0.0203 (12)0.0256 (13)
C20.0541 (11)0.0539 (11)0.0479 (11)0.0185 (9)0.0065 (9)0.0098 (9)
C30.0438 (10)0.0571 (12)0.0470 (11)0.0224 (9)0.0017 (8)0.0072 (9)
C40.0433 (9)0.0456 (10)0.0391 (9)0.0192 (8)0.0001 (7)0.0046 (8)
C50.0452 (10)0.0510 (11)0.0445 (10)0.0253 (8)0.0016 (8)0.0095 (8)
C60.0443 (9)0.0426 (10)0.0402 (9)0.0181 (8)0.0003 (7)0.0049 (8)
C70.0509 (10)0.0428 (10)0.0537 (11)0.0189 (8)0.0046 (9)0.0126 (9)
C80.0512 (10)0.0514 (11)0.0486 (10)0.0215 (8)0.0091 (8)0.0215 (9)
C90.0452 (10)0.0540 (11)0.0400 (10)0.0135 (8)0.0014 (8)0.0207 (8)
C100.0472 (10)0.0479 (10)0.0369 (9)0.0085 (8)0.0037 (7)0.0172 (8)
C110.0467 (10)0.0474 (11)0.0558 (11)0.0057 (8)0.0043 (9)0.0083 (9)
C120.0478 (11)0.0585 (12)0.0612 (12)0.0131 (9)0.0070 (9)0.0078 (10)
C130.0729 (13)0.0545 (12)0.0457 (11)0.0226 (10)0.0093 (10)0.0141 (9)
C140.104 (2)0.0712 (16)0.0887 (19)0.0398 (15)0.0215 (16)0.0124 (14)
C150.0676 (13)0.0622 (13)0.0564 (12)0.0282 (11)0.0072 (10)0.0236 (10)
C160.0566 (11)0.0626 (13)0.0586 (12)0.0331 (10)0.0047 (9)0.0215 (10)
C170.0455 (10)0.0466 (10)0.0407 (10)0.0226 (8)0.0006 (8)0.0051 (8)
C180.0411 (9)0.0439 (10)0.0407 (9)0.0162 (8)0.0006 (7)0.0035 (8)
C190.0773 (15)0.0419 (11)0.0585 (13)0.0035 (10)0.0129 (11)0.0142 (9)
C200.0550 (11)0.0528 (12)0.0512 (11)0.0027 (9)0.0109 (9)0.0193 (9)
Geometric parameters (Å, º) top
Cl1—C181.750 (2)C8—H80.9800
O1—C71.436 (2)C8—C91.504 (3)
O1—C81.424 (2)C9—C101.477 (3)
O2—C91.215 (2)C10—C111.392 (3)
N1—C171.376 (2)C10—C201.386 (3)
N1—C181.289 (2)C11—H110.9300
C1—H1A0.9600C11—C121.376 (3)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C12—C131.377 (3)
C1—C21.506 (3)C13—C141.506 (3)
C2—C31.361 (3)C13—C191.391 (3)
C2—C151.417 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C3—C41.416 (3)C14—H14C0.9600
C4—C51.405 (3)C15—H150.9300
C4—C171.420 (2)C15—C161.355 (3)
C5—H50.9300C16—H160.9300
C5—C61.364 (3)C16—C171.398 (3)
C6—C71.483 (3)C19—H190.9300
C6—C181.421 (2)C19—C201.371 (3)
C7—H70.9800C20—H200.9300
C7—C81.476 (3)
C8—O1—C762.16 (12)C10—C9—C8117.05 (16)
C18—N1—C17117.07 (15)C11—C10—C9121.83 (16)
H1A—C1—H1B109.5C20—C10—C9119.83 (17)
H1A—C1—H1C109.5C20—C10—C11118.24 (18)
H1B—C1—H1C109.5C10—C11—H11119.6
C2—C1—H1A109.5C12—C11—C10120.79 (18)
C2—C1—H1B109.5C12—C11—H11119.6
C2—C1—H1C109.5C11—C12—H12119.5
C3—C2—C1121.85 (19)C11—C12—C13121.02 (19)
C3—C2—C15118.32 (19)C13—C12—H12119.5
C15—C2—C1119.8 (2)C12—C13—C14121.1 (2)
C2—C3—H3119.2C12—C13—C19118.09 (19)
C2—C3—C4121.51 (17)C19—C13—C14120.8 (2)
C4—C3—H3119.2C13—C14—H14A109.5
C3—C4—C17119.07 (17)C13—C14—H14B109.5
C5—C4—C3123.48 (16)C13—C14—H14C109.5
C5—C4—C17117.45 (17)H14A—C14—H14B109.5
C4—C5—H5119.6H14A—C14—H14C109.5
C6—C5—C4120.71 (16)H14B—C14—H14C109.5
C6—C5—H5119.6C2—C15—H15119.2
C5—C6—C7122.20 (16)C16—C15—C2121.7 (2)
C5—C6—C18116.50 (17)C16—C15—H15119.2
C18—C6—C7121.30 (17)C15—C16—H16119.5
O1—C7—C6115.74 (16)C15—C16—C17120.95 (18)
O1—C7—H7116.2C17—C16—H16119.5
O1—C7—C858.52 (12)N1—C17—C4121.97 (17)
C6—C7—H7116.2N1—C17—C16119.55 (16)
C8—C7—C6121.17 (16)C16—C17—C4118.47 (18)
C8—C7—H7116.2N1—C18—Cl1115.87 (13)
O1—C8—C759.32 (12)N1—C18—C6126.28 (18)
O1—C8—H8116.4C6—C18—Cl1117.85 (15)
O1—C8—C9115.69 (16)C13—C19—H19119.3
C7—C8—H8116.4C20—C19—C13121.31 (19)
C7—C8—C9120.34 (16)C20—C19—H19119.3
C9—C8—H8116.4C10—C20—H20119.7
O2—C9—C8120.14 (17)C19—C20—C10120.54 (19)
O2—C9—C10122.79 (17)C19—C20—H20119.7
O1—C7—C8—C9103.70 (19)C7—C6—C18—N1179.09 (17)
O1—C8—C9—O216.3 (2)C7—C8—C9—O284.3 (2)
O1—C8—C9—C10161.95 (14)C7—C8—C9—C1093.9 (2)
O2—C9—C10—C11168.50 (18)C8—O1—C7—C6112.25 (18)
O2—C9—C10—C207.9 (3)C8—C9—C10—C119.7 (2)
C1—C2—C3—C4179.65 (18)C8—C9—C10—C20173.97 (16)
C1—C2—C15—C16179.8 (2)C9—C10—C11—C12175.15 (17)
C2—C3—C4—C5178.43 (17)C9—C10—C20—C19175.67 (17)
C2—C3—C4—C170.8 (3)C10—C11—C12—C130.6 (3)
C2—C15—C16—C170.3 (3)C11—C10—C20—C190.8 (3)
C3—C2—C15—C160.0 (3)C11—C12—C13—C14178.1 (2)
C3—C4—C5—C6179.25 (16)C11—C12—C13—C190.5 (3)
C3—C4—C17—N1179.65 (16)C12—C13—C19—C201.0 (3)
C3—C4—C17—C160.4 (3)C13—C19—C20—C100.3 (3)
C4—C5—C6—C7178.83 (16)C14—C13—C19—C20177.7 (2)
C4—C5—C6—C180.7 (3)C15—C2—C3—C40.6 (3)
C5—C4—C17—N11.1 (3)C15—C16—C17—N1179.83 (18)
C5—C4—C17—C16178.81 (16)C15—C16—C17—C40.1 (3)
C5—C6—C7—O14.9 (2)C17—N1—C18—Cl1178.95 (12)
C5—C6—C7—C872.2 (2)C17—N1—C18—C60.6 (3)
C5—C6—C18—Cl1179.95 (13)C17—C4—C5—C60.0 (3)
C5—C6—C18—N10.4 (3)C18—N1—C17—C41.3 (3)
C6—C7—C8—O1102.98 (19)C18—N1—C17—C16178.55 (16)
C6—C7—C8—C90.7 (3)C18—C6—C7—O1174.58 (15)
C7—O1—C8—C9111.49 (18)C18—C6—C7—C8107.3 (2)
C7—C6—C18—Cl10.4 (2)C20—C10—C11—C121.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.932.873.788 (2)168
C12—H12···O2ii0.932.633.426 (3)144
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors are thankful to the authorities of Jain University for their encouragement and financial support for this work, and the Department of Solid State Chemistry, Indian Institute of Science, for the facility provided to record crystal data.

References

First citationBoulcina, R., Belfaitah, A., Rhouati, S. & Debache, A. (2008). J. Soc. Alger. Chim, 18, 61–70.  CAS Google Scholar
First citationBoulcina, R., Bouacida, S., Roisnel, T. & Debache, A. (2007). Acta Cryst. E63, o3795–o3796.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPreveena, N., Nagendrappa, G., Suresha Kumara, T. H., Tiwari, A. K., Chaithanya, M. S., Nagananda, G. S., Sujan Ganapathy, P. S., Guru Row, T. N., Amar, A. H. & Chethana, P. R. (2015). Int. J. Phar. Sci. Inv. 4, 53–76.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds