organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1S,3R,8R)-2,2-Di­chloro-3,7,7,10-tetra­methyl-11-methyl­enetri­cyclo­[6.4.0.01,3]dodec-9-ene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: benharref@uca.ac.ma

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 10 March 2017; accepted 15 March 2017; online 21 March 2017)

The title compound, C17H24Cl2, was synthesized in four steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from an essential oil of the Atlas cedar (Cedrus atlantica). The mol­ecule is built from fused six- and seven-membered rings, and an additional three-membered ring. The dihedral angle between the mean planes of the cyclo­hexene and cyclo­heptane rings is 58.37 (19)°. There is an intra­molecular C—H⋯Cl hydrogen bond present involving a Cl atom and the H atom of the unique methine C atom, forming an S(5) ring motif. There are no significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The essential oil of Atlas cedar(Cedrus atlantica) consists mainly (50%) of a hydro­carbon sesquiterpene called β-himachalene (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). The reactivity of these sesquiterpenes and their derivatives have been studied extensively by our team in order to prepare new products having biological properties (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.], 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]; Ait Elhad et al., 2017[Ait Elhad, M., Benharref, A., El Ammari, L., Saadi, M., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170255.]). These compounds have been tested, using the food poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]). Herein, we report on the crystal structure of the title compound.

The mol­ecular structure is illustrated in Fig. 1[link]. The mol­ecule is built up from a seven-membered ring, which is fused to a six-membered ring and a three-membered ring. The six-membered ring shows a half-chair conformation, as indicated by the total puckering amplitude QT of 0.457 (3) Å and spherical polar angle θ = 127.5 (5)° and φ2 = 165.3 (7)°, whereas the seven-membered ring displays a boat conformation with QT = 1.121 (4) Å and spherical polar angle θ = 87.59 (26)°, φ2 = 311.0 (2)° and φ3 = 247 (5)°. The mean planes of the six- and seven-membered rings are inclined to one another by 58.37 (19)°. The three-membered ring (C1–C3) is nearly perpendicular to the six-membered ring (C1/C8–C12) mean plane, making a dihedral angle of 86.1 (3)°. There is an intra­molecular C—H⋯Cl hydrogen bond present involving a chlorine Cl atom, Cl1 and the H atom of atom C8 common to both rings, forming an S(5) ring motif (Table 1[link] and Fig. 1[link]). There are no significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1 0.98 2.60 3.174 (3) 117
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

Synthesis and crystallization

In a 250 ml reactor equipped with a condenser, dropping funnel and a magnetic stirrer, was introduced 20 ml of anhydrous ether and 1 g of magnesium, and then via the dropping funnel, 2 ml of methyl iodide dissolved in 20 ml of ether were added dropwise. Thereafter, 6 g (20 mmol) of (1S,3R,8R)-2,2-di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3] dodecan-11-one (Ourhriss et al., 2013[Ourhriss, N., Benharref, A., Oukhrib, A., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o830.]) solubilized in 60 ml of ether were added dropwise. At the end of the addition, the mixture was stirred for 4 h at ambient temperature. After addition of 50 ml water, the reaction mixture was extracted three times with 20 ml of di­chloro­methane. The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. The residue obtained was chromatographed on silica eluting with hexane, which allowed the isolation of the title compound (yield 1.5 g, 25%). It was recrystallized from petroleum ether, yielding colourless prismatic crystals on slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects [Flack parameter = −0.02 (4)], as C1(S), C3(R) and C8(R).

Table 2
Experimental details

Crystal data
Chemical formula C17H24Cl2
Mr 299.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.5995 (3), 13.4865 (4), 18.2435 (7)
V3) 1623.75 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.24 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22208, 3322, 2402
Rint 0.061
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.02
No. of reflections 3322
No. of parameters 176
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Absolute structure Flack x determined using 811 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (4)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(1S,3R,8R)-2,2-Dichloro-3,7,7,10-tetramethyl-11-methylenetricyclo[6.4.0.01,3]dodec-9-ene top
Crystal data top
C17H24Cl2Dx = 1.224 Mg m3
Mr = 299.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3322 reflections
a = 6.5995 (3) Åθ = 2.7–26.4°
b = 13.4865 (4) ŵ = 0.39 mm1
c = 18.2435 (7) ÅT = 296 K
V = 1623.75 (11) Å3Prismatic, colourless
Z = 40.24 × 0.2 × 0.15 mm
F(000) = 640
Data collection top
Bruker X8 APEX
diffractometer
2402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.661, Tmax = 0.746k = 1416
22208 measured reflectionsl = 2222
3322 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3683P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3322 reflectionsΔρmax = 0.22 e Å3
176 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack x determined using 811 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74059 (16)0.48733 (7)0.22743 (5)0.0593 (3)
Cl20.31946 (19)0.46806 (9)0.19407 (6)0.0729 (4)
C80.6086 (5)0.4877 (2)0.39470 (17)0.0373 (8)
H80.73610.50330.36970.045*
C10.4414 (5)0.5081 (2)0.34001 (19)0.0393 (8)
C100.4643 (8)0.3142 (3)0.3983 (2)0.0558 (12)
C70.6048 (6)0.5533 (3)0.4665 (2)0.0472 (9)
C90.6143 (7)0.3785 (3)0.4108 (2)0.0504 (10)
H90.73260.35340.43140.060*
C30.4449 (6)0.6081 (3)0.2991 (2)0.0469 (9)
C20.4937 (6)0.5133 (3)0.25931 (19)0.0448 (9)
C120.2456 (6)0.4582 (3)0.3607 (2)0.0566 (10)
H12A0.14450.47170.32340.068*
H12B0.19710.48550.40670.068*
C110.2719 (7)0.3478 (3)0.3686 (2)0.0574 (11)
C40.6192 (7)0.6770 (3)0.3179 (2)0.0587 (12)
H4A0.62610.72950.28160.070*
H4B0.74540.64010.31580.070*
C60.5094 (9)0.6556 (3)0.4524 (2)0.0707 (14)
H6A0.36780.64490.44050.085*
H6B0.51280.69180.49830.085*
C50.5962 (9)0.7228 (3)0.3940 (2)0.0722 (15)
H5A0.72840.74540.41020.087*
H5B0.50990.78080.38990.087*
C150.4846 (8)0.5050 (4)0.5288 (2)0.0763 (14)
H15A0.48940.54690.57140.115*
H15B0.54280.44170.54040.115*
H15C0.34630.49630.51390.115*
C160.8238 (8)0.5643 (4)0.4931 (3)0.0816 (16)
H16A0.82560.60090.53820.122*
H16B0.90160.59910.45680.122*
H16C0.88150.49980.50090.122*
C170.2504 (8)0.6630 (3)0.2818 (3)0.0804 (15)
H17A0.20370.69680.32500.121*
H17B0.14930.61650.26600.121*
H17C0.27500.71040.24360.121*
C140.4937 (10)0.2054 (3)0.4160 (3)0.095 (2)
H14A0.62910.19490.43360.142*
H14B0.47210.16660.37260.142*
H14C0.39840.18580.45300.142*
C130.1223 (9)0.2868 (4)0.3491 (3)0.0899 (17)
H13A0.13810.21860.35420.108*
H13B0.00210.31240.33040.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0631 (6)0.0683 (6)0.0464 (5)0.0108 (6)0.0118 (5)0.0042 (5)
Cl20.0833 (9)0.0790 (8)0.0562 (6)0.0033 (6)0.0283 (6)0.0072 (6)
C80.0356 (19)0.0390 (19)0.0374 (18)0.0032 (16)0.0009 (15)0.0028 (15)
C10.0363 (19)0.0397 (19)0.0418 (19)0.0008 (16)0.0006 (15)0.0043 (16)
C100.088 (4)0.040 (2)0.040 (2)0.004 (2)0.013 (2)0.0014 (17)
C70.049 (2)0.051 (2)0.041 (2)0.0043 (18)0.0038 (18)0.0052 (17)
C90.059 (3)0.052 (2)0.040 (2)0.016 (2)0.000 (2)0.0029 (17)
C30.054 (3)0.045 (2)0.042 (2)0.0128 (19)0.0034 (19)0.0017 (17)
C20.049 (2)0.048 (2)0.038 (2)0.0028 (19)0.0072 (15)0.0032 (17)
C120.045 (2)0.068 (3)0.057 (2)0.003 (2)0.002 (2)0.0041 (19)
C110.060 (3)0.062 (3)0.050 (2)0.019 (2)0.015 (2)0.0069 (18)
C40.078 (3)0.042 (2)0.056 (3)0.006 (2)0.009 (2)0.0001 (18)
C60.096 (4)0.060 (3)0.056 (3)0.010 (3)0.012 (3)0.019 (2)
C50.109 (4)0.043 (2)0.064 (3)0.008 (2)0.007 (3)0.011 (2)
C150.092 (3)0.089 (3)0.048 (3)0.003 (3)0.017 (2)0.008 (3)
C160.074 (3)0.100 (4)0.071 (3)0.010 (3)0.015 (3)0.024 (3)
C170.081 (4)0.074 (3)0.087 (4)0.038 (3)0.003 (3)0.006 (2)
C140.160 (6)0.043 (2)0.080 (4)0.005 (3)0.017 (4)0.008 (2)
C130.083 (4)0.090 (4)0.097 (4)0.041 (3)0.015 (3)0.018 (3)
Geometric parameters (Å, º) top
Cl1—C21.765 (4)C4—C51.528 (5)
Cl2—C21.764 (4)C4—H4A0.9700
C8—C91.503 (5)C4—H4B0.9700
C8—C11.513 (5)C6—C51.511 (6)
C8—C71.580 (5)C6—H6A0.9700
C8—H80.9800C6—H6B0.9700
C1—C121.505 (5)C5—H5A0.9700
C1—C21.514 (5)C5—H5B0.9700
C1—C31.542 (5)C15—H15A0.9600
C10—C91.335 (6)C15—H15B0.9600
C10—C111.453 (6)C15—H15C0.9600
C10—C141.515 (6)C16—H16A0.9600
C7—C151.532 (5)C16—H16B0.9600
C7—C161.532 (6)C16—H16C0.9600
C7—C61.539 (6)C17—H17A0.9600
C9—H90.9300C17—H17B0.9600
C3—C21.506 (5)C17—H17C0.9600
C3—C171.514 (5)C14—H14A0.9600
C3—C41.518 (6)C14—H14B0.9600
C12—C111.507 (5)C14—H14C0.9600
C12—H12A0.9700C13—H13A0.9300
C12—H12B0.9700C13—H13B0.9300
C11—C131.333 (6)
C9—C8—C1109.0 (3)C3—C4—C5112.2 (4)
C9—C8—C7112.8 (3)C3—C4—H4A109.2
C1—C8—C7115.6 (3)C5—C4—H4A109.2
C9—C8—H8106.3C3—C4—H4B109.2
C1—C8—H8106.3C5—C4—H4B109.2
C7—C8—H8106.3H4A—C4—H4B107.9
C12—C1—C8112.3 (3)C5—C6—C7120.0 (4)
C12—C1—C2117.4 (3)C5—C6—H6A107.3
C8—C1—C2118.9 (3)C7—C6—H6A107.3
C12—C1—C3121.7 (3)C5—C6—H6B107.3
C8—C1—C3117.8 (3)C7—C6—H6B107.3
C2—C1—C359.0 (2)H6A—C6—H6B106.9
C9—C10—C11120.6 (4)C6—C5—C4115.8 (3)
C9—C10—C14119.8 (5)C6—C5—H5A108.3
C11—C10—C14119.5 (4)C4—C5—H5A108.3
C15—C7—C16107.1 (4)C6—C5—H5B108.3
C15—C7—C6107.1 (4)C4—C5—H5B108.3
C16—C7—C6110.6 (4)H5A—C5—H5B107.4
C15—C7—C8112.7 (3)C7—C15—H15A109.5
C16—C7—C8107.6 (3)C7—C15—H15B109.5
C6—C7—C8111.7 (3)H15A—C15—H15B109.5
C10—C9—C8125.8 (4)C7—C15—H15C109.5
C10—C9—H9117.1H15A—C15—H15C109.5
C8—C9—H9117.1H15B—C15—H15C109.5
C2—C3—C17119.7 (3)C7—C16—H16A109.5
C2—C3—C4117.8 (3)C7—C16—H16B109.5
C17—C3—C4113.0 (3)H16A—C16—H16B109.5
C2—C3—C159.6 (2)C7—C16—H16C109.5
C17—C3—C1121.0 (3)H16A—C16—H16C109.5
C4—C3—C1116.0 (3)H16B—C16—H16C109.5
C3—C2—C161.4 (2)C3—C17—H17A109.5
C3—C2—Cl2118.7 (3)C3—C17—H17B109.5
C1—C2—Cl2119.4 (3)H17A—C17—H17B109.5
C3—C2—Cl1121.7 (3)C3—C17—H17C109.5
C1—C2—Cl1121.5 (3)H17A—C17—H17C109.5
Cl2—C2—Cl1108.11 (19)H17B—C17—H17C109.5
C1—C12—C11111.5 (3)C10—C14—H14A109.5
C1—C12—H12A109.3C10—C14—H14B109.5
C11—C12—H12A109.3H14A—C14—H14B109.5
C1—C12—H12B109.3C10—C14—H14C109.5
C11—C12—H12B109.3H14A—C14—H14C109.5
H12A—C12—H12B108.0H14B—C14—H14C109.5
C13—C11—C10123.7 (4)C11—C13—H13A120.0
C13—C11—C12120.0 (5)C11—C13—H13B120.0
C10—C11—C12116.4 (4)H13A—C13—H13B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl10.982.603.174 (3)117
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAit Elhad, M., Benharref, A., El Ammari, L., Saadi, M., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170255.  Google Scholar
First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Oukhrib, A., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o830.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds