organic compounds
(1S,3R,8R)-2,2-Dichloro-3,7,7,10-tetramethyl-11-methylenetricyclo[6.4.0.01,3]dodec-9-ene
aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: benharref@uca.ac.ma
The title compound, C17H24Cl2, was synthesized in four steps from β-himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzocycloheptene), which was isolated from an essential oil of the Atlas cedar (Cedrus atlantica). The molecule is built from fused six- and seven-membered rings, and an additional three-membered ring. The dihedral angle between the mean planes of the cyclohexene and cycloheptane rings is 58.37 (19)°. There is an intramolecular C—H⋯Cl hydrogen bond present involving a Cl atom and the H atom of the unique methine C atom, forming an S(5) ring motif. There are no significant intermolecular interactions present.
Keywords: crystal structure; β-himachalene; three fused rings.
CCDC reference: 1538178
Structure description
The essential oil of Atlas cedar(Cedrus atlantica) consists mainly (50%) of a hydrocarbon sesquiterpene called β-himachalene (El Haib et al., 2011). The reactivity of these sesquiterpenes and their derivatives have been studied extensively by our team in order to prepare new products having biological properties (El Haib et al., 2011; Benharref et al., 2015, 2016; Ait Elhad et al., 2017). These compounds have been tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004). Herein, we report on the of the title compound.
The molecular structure is illustrated in Fig. 1. The molecule is built up from a seven-membered ring, which is fused to a six-membered ring and a three-membered ring. The six-membered ring shows a half-chair conformation, as indicated by the total puckering amplitude QT of 0.457 (3) Å and spherical polar angle θ = 127.5 (5)° and φ2 = 165.3 (7)°, whereas the seven-membered ring displays a boat conformation with QT = 1.121 (4) Å and spherical polar angle θ = 87.59 (26)°, φ2 = 311.0 (2)° and φ3 = 247 (5)°. The mean planes of the six- and seven-membered rings are inclined to one another by 58.37 (19)°. The three-membered ring (C1–C3) is nearly perpendicular to the six-membered ring (C1/C8–C12) mean plane, making a dihedral angle of 86.1 (3)°. There is an intramolecular C—H⋯Cl hydrogen bond present involving a chlorine Cl atom, Cl1 and the H atom of atom C8 common to both rings, forming an S(5) ring motif (Table 1 and Fig. 1). There are no significant intermolecular interactions present.
|
Synthesis and crystallization
In a 250 ml reactor equipped with a condenser, dropping funnel and a magnetic stirrer, was introduced 20 ml of anhydrous ether and 1 g of magnesium, and then via the dropping funnel, 2 ml of methyl iodide dissolved in 20 ml of ether were added dropwise. Thereafter, 6 g (20 mmol) of (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3] dodecan-11-one (Ourhriss et al., 2013) solubilized in 60 ml of ether were added dropwise. At the end of the addition, the mixture was stirred for 4 h at ambient temperature. After addition of 50 ml water, the reaction mixture was extracted three times with 20 ml of dichloromethane. The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. The residue obtained was chromatographed on silica eluting with hexane, which allowed the isolation of the title compound (yield 1.5 g, 25%). It was recrystallized from petroleum ether, yielding colourless prismatic crystals on slow evaporation of the solvent.
Refinement
Crystal data, data collection and structure . Owing to the presence of Cl atoms, the could be fully confirmed from effects [Flack parameter = −0.02 (4)], as C1(S), C3(R) and C8(R).
details are summarized in Table 2Structural data
CCDC reference: 1538178
https://doi.org/10.1107/S2414314617004217/ff4014sup1.cif
contains datablocks I, block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617004217/ff4014Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617004217/ff4014Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C17H24Cl2 | Dx = 1.224 Mg m−3 |
Mr = 299.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3322 reflections |
a = 6.5995 (3) Å | θ = 2.7–26.4° |
b = 13.4865 (4) Å | µ = 0.39 mm−1 |
c = 18.2435 (7) Å | T = 296 K |
V = 1623.75 (11) Å3 | Prismatic, colourless |
Z = 4 | 0.24 × 0.2 × 0.15 mm |
F(000) = 640 |
Bruker X8 APEX diffractometer | 2402 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.061 |
φ and ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.661, Tmax = 0.746 | k = −14→16 |
22208 measured reflections | l = −22→22 |
3322 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3683P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3322 reflections | Δρmax = 0.22 e Å−3 |
176 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 811 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74059 (16) | 0.48733 (7) | 0.22743 (5) | 0.0593 (3) | |
Cl2 | 0.31946 (19) | 0.46806 (9) | 0.19407 (6) | 0.0729 (4) | |
C8 | 0.6086 (5) | 0.4877 (2) | 0.39470 (17) | 0.0373 (8) | |
H8 | 0.7361 | 0.5033 | 0.3697 | 0.045* | |
C1 | 0.4414 (5) | 0.5081 (2) | 0.34001 (19) | 0.0393 (8) | |
C10 | 0.4643 (8) | 0.3142 (3) | 0.3983 (2) | 0.0558 (12) | |
C7 | 0.6048 (6) | 0.5533 (3) | 0.4665 (2) | 0.0472 (9) | |
C9 | 0.6143 (7) | 0.3785 (3) | 0.4108 (2) | 0.0504 (10) | |
H9 | 0.7326 | 0.3534 | 0.4314 | 0.060* | |
C3 | 0.4449 (6) | 0.6081 (3) | 0.2991 (2) | 0.0469 (9) | |
C2 | 0.4937 (6) | 0.5133 (3) | 0.25931 (19) | 0.0448 (9) | |
C12 | 0.2456 (6) | 0.4582 (3) | 0.3607 (2) | 0.0566 (10) | |
H12A | 0.1445 | 0.4717 | 0.3234 | 0.068* | |
H12B | 0.1971 | 0.4855 | 0.4067 | 0.068* | |
C11 | 0.2719 (7) | 0.3478 (3) | 0.3686 (2) | 0.0574 (11) | |
C4 | 0.6192 (7) | 0.6770 (3) | 0.3179 (2) | 0.0587 (12) | |
H4A | 0.6261 | 0.7295 | 0.2816 | 0.070* | |
H4B | 0.7454 | 0.6401 | 0.3158 | 0.070* | |
C6 | 0.5094 (9) | 0.6556 (3) | 0.4524 (2) | 0.0707 (14) | |
H6A | 0.3678 | 0.6449 | 0.4405 | 0.085* | |
H6B | 0.5128 | 0.6918 | 0.4983 | 0.085* | |
C5 | 0.5962 (9) | 0.7228 (3) | 0.3940 (2) | 0.0722 (15) | |
H5A | 0.7284 | 0.7454 | 0.4102 | 0.087* | |
H5B | 0.5099 | 0.7808 | 0.3899 | 0.087* | |
C15 | 0.4846 (8) | 0.5050 (4) | 0.5288 (2) | 0.0763 (14) | |
H15A | 0.4894 | 0.5469 | 0.5714 | 0.115* | |
H15B | 0.5428 | 0.4417 | 0.5404 | 0.115* | |
H15C | 0.3463 | 0.4963 | 0.5139 | 0.115* | |
C16 | 0.8238 (8) | 0.5643 (4) | 0.4931 (3) | 0.0816 (16) | |
H16A | 0.8256 | 0.6009 | 0.5382 | 0.122* | |
H16B | 0.9016 | 0.5991 | 0.4568 | 0.122* | |
H16C | 0.8815 | 0.4998 | 0.5009 | 0.122* | |
C17 | 0.2504 (8) | 0.6630 (3) | 0.2818 (3) | 0.0804 (15) | |
H17A | 0.2037 | 0.6968 | 0.3250 | 0.121* | |
H17B | 0.1493 | 0.6165 | 0.2660 | 0.121* | |
H17C | 0.2750 | 0.7104 | 0.2436 | 0.121* | |
C14 | 0.4937 (10) | 0.2054 (3) | 0.4160 (3) | 0.095 (2) | |
H14A | 0.6291 | 0.1949 | 0.4336 | 0.142* | |
H14B | 0.4721 | 0.1666 | 0.3726 | 0.142* | |
H14C | 0.3984 | 0.1858 | 0.4530 | 0.142* | |
C13 | 0.1223 (9) | 0.2868 (4) | 0.3491 (3) | 0.0899 (17) | |
H13A | 0.1381 | 0.2186 | 0.3542 | 0.108* | |
H13B | 0.0021 | 0.3124 | 0.3304 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0631 (6) | 0.0683 (6) | 0.0464 (5) | 0.0108 (6) | 0.0118 (5) | −0.0042 (5) |
Cl2 | 0.0833 (9) | 0.0790 (8) | 0.0562 (6) | −0.0033 (6) | −0.0283 (6) | −0.0072 (6) |
C8 | 0.0356 (19) | 0.0390 (19) | 0.0374 (18) | 0.0032 (16) | 0.0009 (15) | −0.0028 (15) |
C1 | 0.0363 (19) | 0.0397 (19) | 0.0418 (19) | 0.0008 (16) | −0.0006 (15) | −0.0043 (16) |
C10 | 0.088 (4) | 0.040 (2) | 0.040 (2) | −0.004 (2) | 0.013 (2) | −0.0014 (17) |
C7 | 0.049 (2) | 0.051 (2) | 0.041 (2) | −0.0043 (18) | 0.0038 (18) | −0.0052 (17) |
C9 | 0.059 (3) | 0.052 (2) | 0.040 (2) | 0.016 (2) | 0.000 (2) | 0.0029 (17) |
C3 | 0.054 (3) | 0.045 (2) | 0.042 (2) | 0.0128 (19) | −0.0034 (19) | 0.0017 (17) |
C2 | 0.049 (2) | 0.048 (2) | 0.038 (2) | 0.0028 (19) | −0.0072 (15) | −0.0032 (17) |
C12 | 0.045 (2) | 0.068 (3) | 0.057 (2) | −0.003 (2) | −0.002 (2) | −0.0041 (19) |
C11 | 0.060 (3) | 0.062 (3) | 0.050 (2) | −0.019 (2) | 0.015 (2) | −0.0069 (18) |
C4 | 0.078 (3) | 0.042 (2) | 0.056 (3) | −0.006 (2) | 0.009 (2) | 0.0001 (18) |
C6 | 0.096 (4) | 0.060 (3) | 0.056 (3) | 0.010 (3) | 0.012 (3) | −0.019 (2) |
C5 | 0.109 (4) | 0.043 (2) | 0.064 (3) | −0.008 (2) | 0.007 (3) | −0.011 (2) |
C15 | 0.092 (3) | 0.089 (3) | 0.048 (3) | −0.003 (3) | 0.017 (2) | −0.008 (3) |
C16 | 0.074 (3) | 0.100 (4) | 0.071 (3) | −0.010 (3) | −0.015 (3) | −0.024 (3) |
C17 | 0.081 (4) | 0.074 (3) | 0.087 (4) | 0.038 (3) | −0.003 (3) | 0.006 (2) |
C14 | 0.160 (6) | 0.043 (2) | 0.080 (4) | −0.005 (3) | 0.017 (4) | 0.008 (2) |
C13 | 0.083 (4) | 0.090 (4) | 0.097 (4) | −0.041 (3) | 0.015 (3) | −0.018 (3) |
Cl1—C2 | 1.765 (4) | C4—C5 | 1.528 (5) |
Cl2—C2 | 1.764 (4) | C4—H4A | 0.9700 |
C8—C9 | 1.503 (5) | C4—H4B | 0.9700 |
C8—C1 | 1.513 (5) | C6—C5 | 1.511 (6) |
C8—C7 | 1.580 (5) | C6—H6A | 0.9700 |
C8—H8 | 0.9800 | C6—H6B | 0.9700 |
C1—C12 | 1.505 (5) | C5—H5A | 0.9700 |
C1—C2 | 1.514 (5) | C5—H5B | 0.9700 |
C1—C3 | 1.542 (5) | C15—H15A | 0.9600 |
C10—C9 | 1.335 (6) | C15—H15B | 0.9600 |
C10—C11 | 1.453 (6) | C15—H15C | 0.9600 |
C10—C14 | 1.515 (6) | C16—H16A | 0.9600 |
C7—C15 | 1.532 (5) | C16—H16B | 0.9600 |
C7—C16 | 1.532 (6) | C16—H16C | 0.9600 |
C7—C6 | 1.539 (6) | C17—H17A | 0.9600 |
C9—H9 | 0.9300 | C17—H17B | 0.9600 |
C3—C2 | 1.506 (5) | C17—H17C | 0.9600 |
C3—C17 | 1.514 (5) | C14—H14A | 0.9600 |
C3—C4 | 1.518 (6) | C14—H14B | 0.9600 |
C12—C11 | 1.507 (5) | C14—H14C | 0.9600 |
C12—H12A | 0.9700 | C13—H13A | 0.9300 |
C12—H12B | 0.9700 | C13—H13B | 0.9300 |
C11—C13 | 1.333 (6) | ||
C9—C8—C1 | 109.0 (3) | C3—C4—C5 | 112.2 (4) |
C9—C8—C7 | 112.8 (3) | C3—C4—H4A | 109.2 |
C1—C8—C7 | 115.6 (3) | C5—C4—H4A | 109.2 |
C9—C8—H8 | 106.3 | C3—C4—H4B | 109.2 |
C1—C8—H8 | 106.3 | C5—C4—H4B | 109.2 |
C7—C8—H8 | 106.3 | H4A—C4—H4B | 107.9 |
C12—C1—C8 | 112.3 (3) | C5—C6—C7 | 120.0 (4) |
C12—C1—C2 | 117.4 (3) | C5—C6—H6A | 107.3 |
C8—C1—C2 | 118.9 (3) | C7—C6—H6A | 107.3 |
C12—C1—C3 | 121.7 (3) | C5—C6—H6B | 107.3 |
C8—C1—C3 | 117.8 (3) | C7—C6—H6B | 107.3 |
C2—C1—C3 | 59.0 (2) | H6A—C6—H6B | 106.9 |
C9—C10—C11 | 120.6 (4) | C6—C5—C4 | 115.8 (3) |
C9—C10—C14 | 119.8 (5) | C6—C5—H5A | 108.3 |
C11—C10—C14 | 119.5 (4) | C4—C5—H5A | 108.3 |
C15—C7—C16 | 107.1 (4) | C6—C5—H5B | 108.3 |
C15—C7—C6 | 107.1 (4) | C4—C5—H5B | 108.3 |
C16—C7—C6 | 110.6 (4) | H5A—C5—H5B | 107.4 |
C15—C7—C8 | 112.7 (3) | C7—C15—H15A | 109.5 |
C16—C7—C8 | 107.6 (3) | C7—C15—H15B | 109.5 |
C6—C7—C8 | 111.7 (3) | H15A—C15—H15B | 109.5 |
C10—C9—C8 | 125.8 (4) | C7—C15—H15C | 109.5 |
C10—C9—H9 | 117.1 | H15A—C15—H15C | 109.5 |
C8—C9—H9 | 117.1 | H15B—C15—H15C | 109.5 |
C2—C3—C17 | 119.7 (3) | C7—C16—H16A | 109.5 |
C2—C3—C4 | 117.8 (3) | C7—C16—H16B | 109.5 |
C17—C3—C4 | 113.0 (3) | H16A—C16—H16B | 109.5 |
C2—C3—C1 | 59.6 (2) | C7—C16—H16C | 109.5 |
C17—C3—C1 | 121.0 (3) | H16A—C16—H16C | 109.5 |
C4—C3—C1 | 116.0 (3) | H16B—C16—H16C | 109.5 |
C3—C2—C1 | 61.4 (2) | C3—C17—H17A | 109.5 |
C3—C2—Cl2 | 118.7 (3) | C3—C17—H17B | 109.5 |
C1—C2—Cl2 | 119.4 (3) | H17A—C17—H17B | 109.5 |
C3—C2—Cl1 | 121.7 (3) | C3—C17—H17C | 109.5 |
C1—C2—Cl1 | 121.5 (3) | H17A—C17—H17C | 109.5 |
Cl2—C2—Cl1 | 108.11 (19) | H17B—C17—H17C | 109.5 |
C1—C12—C11 | 111.5 (3) | C10—C14—H14A | 109.5 |
C1—C12—H12A | 109.3 | C10—C14—H14B | 109.5 |
C11—C12—H12A | 109.3 | H14A—C14—H14B | 109.5 |
C1—C12—H12B | 109.3 | C10—C14—H14C | 109.5 |
C11—C12—H12B | 109.3 | H14A—C14—H14C | 109.5 |
H12A—C12—H12B | 108.0 | H14B—C14—H14C | 109.5 |
C13—C11—C10 | 123.7 (4) | C11—C13—H13A | 120.0 |
C13—C11—C12 | 120.0 (5) | C11—C13—H13B | 120.0 |
C10—C11—C12 | 116.4 (4) | H13A—C13—H13B | 120.0 |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Ait Elhad, M., Benharref, A., El Ammari, L., Saadi, M., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170255. Google Scholar
Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ourhriss, N., Benharref, A., Oukhrib, A., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o830. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.