organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Hydrogen-bonding patterns in bis­(cytosinium) tartarate monohydrate

CROSSMARK_Color_square_no_text.svg

aPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India, bCrystal Growth Laboratory, Postgraduate and Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, Tamilnadu, India, and cCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, Tamil Nadu, India
*Correspondence e-mail: sunvag@gmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 28 February 2017; accepted 21 March 2017; online 28 March 2017)

The asymmetric unit of the title cystosinium salt derivative, 2C4H6N3O+·C4H4O62−·H2O, contains two cytosinium cations, one tartaric acid anion and a water mol­ecule. The two cytosinium cations are almost planar (r.m.s. deviations of the fitted atoms are 0.0151 and 0.0213 Å). The crystal structure features C—H⋯O, N—H⋯O and O—H⋯O inter­actions. Further C—O⋯π and ππ inter­actions are observed along the ab plane, contributing to the crystal stability.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrimidine-based derivatives have attracted a great deal of attention in terms of their hydrogen-bonding patterns. Cytosinium is one of the naturally occurring base mol­ecules found in DNA and RNA (Portalone et al., 2009[Portalone, G. & Colapietro, M. (2009). J. Chem. Crystallogr. 39, 193-200.]). Many cytosinium salts of organic acids have been reported previously, viz. cytosinium hydrogen sulfate, cytosinium perchlorate (Bensegueni et al., 2009[Bensegueni, M. A., Cherouana, A., Bendjeddou, L., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. C65, o607-o611.]), cytosinium di­hydrogen phosphite (Messai et al., 2009[Messai, A., Benali-Cherif, N., Jeanneau, E. & Luneau, D. (2009). Acta Cryst. E65, o1147-o1148.]), cytosinium hydrogen chloranilate monohydrate (Gotoh et al., 2006[Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738-o4740.]) and cytosinium zoledronate trihydrate (Sridhar & Ravikumar, 2011[Sridhar, B. & Ravikumar, K. (2011). Acta Cryst. C67, o115-o119.]). As part of our investigations on the growth and characterization of semi-organic crystals containing the nucleic acid component cytosine, we report herein the crystal structure determination and the geometry optimization of the title compound.

A perspective view of the title compound with the atomic numbering scheme is illus­trated in Fig. 1[link]. It crystallizes in the ortho­rhom­bic space group P212121 with two cytosinium cations, a tartarate anion and one water mol­ecule. The two cystosinium cations are almost planar, the r.m.s deviations of the fitted atoms C1–C4/N1–N3/O1 and C5–C8/N4–N6/O2 being 0.0151 and 0.0213 Å, respectively. An overlay analysis of the two cations gives an r.m.s. deviation of 1.128 Å. Bond distances and angles in the cations are comparable to those in the cation of cytosinium zoledronate trihydrate (Sridhar & Ravikumar, 2011[Sridhar, B. & Ravikumar, K. (2011). Acta Cryst. C67, o115-o119.]).

[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids for the non-H atoms drawn at the 30% probability level.

The crystal structure features C—H⋯O, N—H⋯O and O—H⋯O inter­actions. The inter­action between N4 and O8 through H4A, N6 and O7 through H6B and N1 and O3 through H1A, N3 and O4 through H3A occur alternately as chain links and form a three-dimensional network enclosing R22(8) ring motifs. The inter­action between N3 and O7 through H3B and N6 and O6 through H6C form parallel chains along the a- and c-axis directions, respectively (Fig. 2[link]). Similarly the inter­actions between N2 and O3 through H2A and N5 and O8 through H5A form infinite parallel chains along the c- and a-axis directions, respectively. The O6—H6A⋯O9 inter­action encloses parallel chains along the ab plane (Fig. 3[link]). Also the inter­actions of C4, C11 with O1 through H4, H11 form infinite parallel chains along the b- and c-axis directions, respectively (Fig. 4[link]). The O9 inter­actions with O2, O5 through H9A, H9B and the inter­action between C10 and O2 through H10 forms an R33(7) ring motif along the ab plane (Fig. 5[link]). A short contact is observed in the tartarate anion between atoms O4 and O5. Details are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.53 3.098 (2) 120
C10—H10⋯O2ii 0.98 2.33 3.312 (2) 175
C11—H11⋯O1iii 0.98 2.38 3.361 (2) 179
O5—H5⋯O4 0.82 2.12 2.6140 (19) 118
O6—H6A⋯O9 0.82 1.87 2.688 (2) 172
N1—H1A⋯O3 0.86 (2) 1.80 (2) 2.656 (2) 171 (3)
N2—H2A⋯O3i 0.86 (2) 1.91 (2) 2.768 (2) 175 (3)
N3—H3A⋯O4 0.84 (2) 2.04 (2) 2.873 (2) 171 (2)
N3—H3B⋯O7iv 0.83 (2) 2.04 (2) 2.865 (2) 172 (2)
N4—H4A⋯O8 0.85 (2) 1.90 (2) 2.748 (2) 173 (3)
N5—H5A⋯O8v 0.86 (2) 1.93 (2) 2.766 (2) 166 (3)
N6—H6B⋯O7 0.85 (2) 1.96 (2) 2.808 (2) 179 (3)
N6—H6C⋯O6vi 0.83 (2) 2.01 (2) 2.812 (2) 163 (2)
O9—H9A⋯O2i 0.83 (2) 2.24 (3) 3.040 (3) 162 (4)
O9—H9B⋯O5vii 0.84 (2) 2.00 (3) 2.812 (2) 161 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vii) x-1, y, z.
[Figure 2]
Figure 2
Crystal packing of the title compound, showing the N—H⋯O inter­actions in the R22(12) motif along the c axis and in parallel chains along the a and c axes as dashed lines. Other H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Crystal packing of the title compound, showing the N—H⋯O inter­actions enclosing parallel chains along the c and a axes and O—H⋯O inter­actions enclosing parallel chains along the ab plane, as dashed lines. Other H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Crystal packing of the title compound, showing the C—H⋯O inter­actions enclosing parallel chains along the b and c axes as dashed lines. Other H atoms have been omitted for clarity.
[Figure 5]
Figure 5
Crystal packing of the title compound, showing the C—H⋯O and O—H⋯O inter­actions enclosing an R33(7) ring motif and parallel chains along the ab plane as dashed lines. Other H atoms have been omitted for clarity.

C—O⋯π inter­actions are observed along the ab plane [C9⋯Cg2(x, −1 + y, z) = 3.876 (2) Å, C9—O3⋯Cg2(x, −1 + y, z) = 15°; C12⋯Cg1(x, 1 + y, z) = 3.497 (2) Å, C12—O8⋯Cg1 = 2°; Cg1 and Cg2 are the centroids of the N1/C1/N2/C4/C3/C2 and N4/C5/N5/C6/C7/C8 rings, respectively]. In addition, weak ππ inter­actions are observed between the two symmetry-related cytosinium rings, with Cg1⋯Cg2(−1 + x, −1 + y, z) = 3.401 (2) Å.

Synthesis and crystallization

A hot supersaturated water solution of cytosine (0.111 g, from Spectrochem) and tartaric acid (0.150 g, from Loba Chemie, India) were mixed in a 1:1 molar ratio and the solution was allowed to evaporate slowly, resulting in the formation of transparent plate-like crystals of cytosinium tartrate monohydrate in 15 days (m.p. 491–493 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C4H6N3O+·C4H4O62−·H2O
Mr 390.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.6932 (8), 10.1152 (8), 20.9336 (17)
V3) 1629.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.25 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan SADABS
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22011, 4920, 4299
Rint 0.024
(sin θ/λ)max−1) 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.11
No. of reflections 4920
No. of parameters 284
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.22
Absolute structure Flack x determined using 1669 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XPREP (Bruker, 2014[Bruker (2014). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-5599.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SADABS and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Qmol (Gans & Shalloway, 2001), Mercury (Macrae et al., 2008), MOPAC (Stewart, 2016) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Bis(cystosinium) tartarate monohydrate top
Crystal data top
2C4H6N3O+·C4H4O62·H2ODx = 1.592 Mg m3
Mr = 390.32Melting point: 493 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.6932 (8) ÅCell parameters from 7834 reflections
b = 10.1152 (8) Åθ = 2.8–28.9°
c = 20.9336 (17) ŵ = 0.14 mm1
V = 1629.0 (3) Å3T = 296 K
Z = 4Plate, colourless
F(000) = 8160.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4920 independent reflections
Radiation source: fine-focus sealed tube4299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 30.5°, θmin = 2.2°
Absorption correction: multi-scan
SADABS
h = 1010
Tmin = 0.705, Tmax = 0.746k = 1414
22011 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.2224P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4920 reflectionsΔρmax = 0.32 e Å3
284 parametersΔρmin = 0.22 e Å3
13 restraintsAbsolute structure: Flack x determined using 1669 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5157 (3)0.12312 (19)0.28216 (8)0.0271 (4)
C20.4512 (2)0.13171 (17)0.39524 (8)0.0227 (3)
C30.3533 (3)0.24948 (18)0.38552 (9)0.0280 (4)
H30.30030.29280.41950.034*
C40.3402 (3)0.29593 (18)0.32550 (10)0.0302 (4)
H40.27550.37210.31820.036*
C51.0040 (3)0.91530 (19)0.27540 (9)0.0282 (4)
C61.1517 (3)1.09471 (19)0.32643 (10)0.0311 (4)
H61.22001.17000.32200.037*
C71.1029 (3)1.05652 (18)0.38512 (9)0.0279 (4)
H71.13401.10500.42110.033*
C81.0018 (2)0.93903 (17)0.39043 (8)0.0228 (3)
C90.6955 (2)0.21335 (16)0.40007 (8)0.0223 (3)
C100.7829 (2)0.34860 (16)0.39920 (8)0.0205 (3)
H100.85480.35490.36070.025*
C110.6476 (2)0.45940 (16)0.39747 (8)0.0191 (3)
H110.57960.45110.35810.023*
C120.7400 (2)0.59383 (15)0.39722 (8)0.0203 (3)
N10.5288 (2)0.07644 (15)0.34392 (7)0.0244 (3)
N20.4183 (3)0.23531 (17)0.27525 (8)0.0313 (4)
N30.4693 (3)0.07353 (16)0.45057 (8)0.0303 (4)
N40.9555 (2)0.87599 (16)0.33577 (7)0.0245 (3)
N51.1043 (3)1.02646 (17)0.27297 (8)0.0327 (4)
N60.9557 (3)0.88801 (16)0.44485 (8)0.0303 (4)
O10.5847 (2)0.06662 (17)0.23794 (7)0.0443 (4)
O20.9624 (2)0.85238 (17)0.22833 (7)0.0438 (4)
O30.6214 (2)0.17628 (13)0.34904 (7)0.0366 (4)
O40.7027 (2)0.14814 (14)0.44995 (7)0.0347 (3)
O50.89220 (18)0.36252 (13)0.45351 (7)0.0308 (3)
H50.88710.29520.47520.046*
O60.53350 (18)0.44816 (13)0.45043 (6)0.0276 (3)
H6A0.43480.43280.43760.041*
O70.74807 (19)0.65974 (12)0.44753 (6)0.0273 (3)
O80.8050 (2)0.63023 (14)0.34462 (6)0.0348 (3)
O90.2191 (3)0.4089 (3)0.39776 (10)0.0725 (8)
H1A0.569 (4)0.003 (2)0.3477 (12)0.051 (8)*
H2A0.403 (3)0.258 (3)0.2363 (9)0.038 (7)*
H3A0.529 (3)0.004 (2)0.4530 (11)0.037 (7)*
H3B0.411 (3)0.094 (2)0.4827 (9)0.026 (6)*
H4A0.902 (3)0.802 (2)0.3369 (11)0.041 (7)*
H5A1.138 (4)1.046 (3)0.2351 (10)0.044 (7)*
H6B0.895 (3)0.8185 (19)0.4459 (11)0.036 (7)*
H6C0.986 (3)0.921 (2)0.4795 (9)0.037 (6)*
H9A0.190 (5)0.401 (4)0.3598 (11)0.096 (14)*
H9B0.134 (4)0.397 (4)0.4223 (14)0.088 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (9)0.0277 (8)0.0211 (8)0.0014 (8)0.0023 (7)0.0016 (7)
C20.0259 (8)0.0190 (7)0.0232 (7)0.0033 (7)0.0007 (7)0.0005 (6)
C30.0308 (10)0.0211 (8)0.0323 (10)0.0018 (7)0.0024 (8)0.0032 (7)
C40.0320 (10)0.0210 (8)0.0377 (10)0.0018 (8)0.0044 (8)0.0034 (8)
C50.0304 (10)0.0314 (9)0.0227 (8)0.0018 (8)0.0024 (7)0.0013 (7)
C60.0324 (10)0.0222 (8)0.0387 (10)0.0020 (8)0.0023 (8)0.0040 (8)
C70.0318 (10)0.0217 (8)0.0302 (9)0.0028 (8)0.0024 (8)0.0028 (7)
C80.0237 (8)0.0209 (7)0.0237 (8)0.0025 (6)0.0011 (6)0.0002 (7)
C90.0280 (9)0.0174 (7)0.0217 (8)0.0007 (7)0.0011 (7)0.0019 (6)
C100.0232 (8)0.0177 (7)0.0205 (7)0.0020 (6)0.0006 (6)0.0020 (6)
C110.0228 (8)0.0187 (7)0.0158 (7)0.0018 (6)0.0009 (6)0.0026 (6)
C120.0235 (8)0.0166 (7)0.0209 (7)0.0004 (6)0.0016 (6)0.0001 (6)
N10.0330 (8)0.0200 (7)0.0202 (7)0.0036 (6)0.0005 (6)0.0011 (6)
N20.0410 (10)0.0278 (8)0.0250 (8)0.0017 (7)0.0048 (7)0.0077 (6)
N30.0435 (10)0.0264 (8)0.0210 (7)0.0037 (7)0.0051 (7)0.0014 (6)
N40.0287 (8)0.0225 (7)0.0223 (7)0.0036 (6)0.0004 (6)0.0009 (6)
N50.0414 (10)0.0311 (8)0.0256 (8)0.0027 (7)0.0056 (7)0.0065 (7)
N60.0422 (10)0.0278 (8)0.0210 (7)0.0083 (7)0.0002 (7)0.0018 (6)
O10.0591 (11)0.0519 (10)0.0219 (6)0.0129 (9)0.0033 (7)0.0021 (6)
O20.0543 (10)0.0535 (10)0.0235 (6)0.0138 (9)0.0041 (7)0.0069 (7)
O30.0632 (11)0.0226 (6)0.0241 (6)0.0123 (7)0.0124 (7)0.0010 (5)
O40.0496 (9)0.0285 (7)0.0261 (6)0.0091 (7)0.0056 (6)0.0074 (6)
O50.0306 (7)0.0262 (6)0.0355 (7)0.0010 (6)0.0120 (6)0.0019 (6)
O60.0240 (6)0.0311 (6)0.0277 (6)0.0020 (6)0.0056 (5)0.0044 (5)
O70.0398 (8)0.0208 (6)0.0212 (6)0.0040 (5)0.0013 (5)0.0042 (5)
O80.0563 (10)0.0249 (6)0.0233 (6)0.0100 (7)0.0110 (6)0.0027 (5)
O90.0402 (10)0.137 (2)0.0409 (10)0.0349 (13)0.0010 (9)0.0080 (13)
Geometric parameters (Å, º) top
C1—O11.211 (2)C9—C101.524 (2)
C1—N21.367 (3)C10—O51.421 (2)
C1—N11.380 (2)C10—C111.530 (2)
C2—N31.307 (2)C10—H100.9800
C2—N11.350 (2)C11—O61.419 (2)
C2—C31.424 (3)C11—C121.534 (2)
C3—C41.345 (3)C11—H110.9800
C3—H30.9300C12—O71.248 (2)
C4—N21.358 (3)C12—O81.264 (2)
C4—H40.9300N1—H1A0.86 (2)
C5—O21.216 (2)N2—H2A0.857 (18)
C5—N51.364 (3)N3—H3A0.842 (18)
C5—N41.377 (2)N3—H3B0.834 (17)
C6—C71.341 (3)N4—H4A0.854 (19)
C6—N51.365 (3)N5—H5A0.857 (19)
C6—H60.9300N6—H6B0.846 (18)
C7—C81.425 (3)N6—H6C0.833 (17)
C7—H70.9300O5—H50.8200
C8—N61.300 (2)O6—H6A0.8200
C8—N41.358 (2)O9—H9A0.83 (2)
C9—O41.236 (2)O9—H9B0.84 (2)
C9—O31.267 (2)
O1—C1—N2123.44 (18)C11—C10—H10108.5
O1—C1—N1121.52 (18)O6—C11—C10110.11 (14)
N2—C1—N1115.04 (17)O6—C11—C12111.12 (13)
N3—C2—N1118.14 (17)C10—C11—C12109.52 (14)
N3—C2—C3124.05 (17)O6—C11—H11108.7
N1—C2—C3117.81 (16)C10—C11—H11108.7
C4—C3—C2117.74 (18)C12—C11—H11108.7
C4—C3—H3121.1O7—C12—O8124.04 (15)
C2—C3—H3121.1O7—C12—C11119.58 (15)
C3—C4—N2122.18 (18)O8—C12—C11116.38 (15)
C3—C4—H4118.9C2—N1—C1124.84 (16)
N2—C4—H4118.9C2—N1—H1A118.0 (18)
O2—C5—N5123.37 (18)C1—N1—H1A115.5 (18)
O2—C5—N4121.41 (18)C4—N2—C1122.35 (16)
N5—C5—N4115.20 (17)C4—N2—H2A123.5 (17)
C7—C6—N5122.05 (18)C1—N2—H2A113.8 (17)
C7—C6—H6119.0C2—N3—H3A119.2 (16)
N5—C6—H6119.0C2—N3—H3B123.3 (15)
C6—C7—C8117.66 (18)H3A—N3—H3B117 (2)
C6—C7—H7121.2C8—N4—C5124.52 (16)
C8—C7—H7121.2C8—N4—H4A121.0 (16)
N6—C8—N4118.70 (16)C5—N4—H4A114.1 (16)
N6—C8—C7123.27 (17)C5—N5—C6122.51 (17)
N4—C8—C7118.01 (16)C5—N5—H5A113.3 (18)
O4—C9—O3125.05 (17)C6—N5—H5A124.2 (18)
O4—C9—C10117.97 (16)C8—N6—H6B120.2 (16)
O3—C9—C10116.98 (15)C8—N6—H6C121.8 (16)
O5—C10—C9109.89 (14)H6B—N6—H6C118 (2)
O5—C10—C11110.42 (13)C10—O5—H5109.5
C9—C10—C11110.95 (14)C11—O6—H6A109.5
O5—C10—H10108.5H9A—O9—H9B111 (3)
C9—C10—H10108.5
N3—C2—C3—C4177.53 (19)O6—C11—C12—O8160.68 (16)
N1—C2—C3—C41.9 (3)C10—C11—C12—O877.45 (19)
C2—C3—C4—N20.9 (3)N3—C2—N1—C1177.22 (18)
N5—C6—C7—C81.4 (3)C3—C2—N1—C12.3 (3)
C6—C7—C8—N6175.8 (2)O1—C1—N1—C2177.9 (2)
C6—C7—C8—N42.5 (3)N2—C1—N1—C21.4 (3)
O4—C9—C10—O513.0 (2)C3—C4—N2—C10.1 (3)
O3—C9—C10—O5166.62 (16)O1—C1—N2—C4179.1 (2)
O4—C9—C10—C11109.38 (19)N1—C1—N2—C40.1 (3)
O3—C9—C10—C1171.0 (2)N6—C8—N4—C5176.22 (18)
O5—C10—C11—O665.06 (17)C7—C8—N4—C52.2 (3)
C9—C10—C11—O657.03 (17)O2—C5—N4—C8177.85 (19)
O5—C10—C11—C1257.41 (17)N5—C5—N4—C80.6 (3)
C9—C10—C11—C12179.50 (14)O2—C5—N5—C6179.1 (2)
O6—C11—C12—O719.7 (2)N4—C5—N5—C60.6 (3)
C10—C11—C12—O7102.17 (18)C7—C6—N5—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.533.098 (2)120
C10—H10···O2ii0.982.333.312 (2)175
C11—H11···O1iii0.982.383.361 (2)179
O5—H5···O40.822.122.6140 (19)118
O6—H6A···O90.821.872.688 (2)172
N1—H1A···O30.86 (2)1.80 (2)2.656 (2)171 (3)
N2—H2A···O3i0.86 (2)1.91 (2)2.768 (2)175 (3)
N3—H3A···O40.84 (2)2.04 (2)2.873 (2)171 (2)
N3—H3B···O7iv0.83 (2)2.04 (2)2.865 (2)172 (2)
N4—H4A···O80.85 (2)1.90 (2)2.748 (2)173 (3)
N5—H5A···O8v0.86 (2)1.93 (2)2.766 (2)166 (3)
N6—H6B···O70.85 (2)1.96 (2)2.808 (2)179 (3)
N6—H6C···O6vi0.83 (2)2.01 (2)2.812 (2)163 (2)
O9—H9A···O2i0.83 (2)2.24 (3)3.040 (3)162 (4)
O9—H9B···O5vii0.84 (2)2.00 (3)2.812 (2)161 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1/2, y+3/2, z+1; (vii) x1, y, z.
 

Acknowledgements

TB and PJ would like to acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support [CSIR MRP.NO.3 (1314)/14/EMR-II, dated 16.4.14]. The authors are also grateful for the scientific support extended by the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras, Chennai, India.

References

First citationBensegueni, M. A., Cherouana, A., Bendjeddou, L., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. C65, o607–o611.  CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–5599.  CrossRef PubMed CAS Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMessai, A., Benali-Cherif, N., Jeanneau, E. & Luneau, D. (2009). Acta Cryst. E65, o1147–o1148.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2009). J. Chem. Crystallogr. 39, 193–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2011). Acta Cryst. C67, o115–o119.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds