organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-3-methyl­pyridinium hydrogen phthalate

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cResearch Scholar in Physics, Mother Teresa University, Kodaikanal 624 102, India, dDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and ePost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 8 March 2017; accepted 16 March 2017; online 21 March 2017)

In the title mol­ecular salt, C6H9N2+·C8H5O4, the cation is protonated at the pyridine N atom and the anion is deprotonated at the hy­droxy O atom. The anion features an intra­molecular O—H⋯O hydrogen bond with the H atom located almost in the middle of the two O atoms. The dihedral angle between the pyridine and benzene rings is 19.17 (12)°. The N—H⋯O hydrogen bonds generate R22(8) and R24(18) ring motifs. The crystal structure is stabilized by N—H⋯O hydrogen bonds. The structure is also influenced by weak ππ [centroid-to-centroid distance = 3.7347 (14) Å] inter­action between the anions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives exhibit anti­fungal, anti­cancer and anti-inflammatory activities (Liu & Hu, 2002[Liu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411-2413.]; Spanka et al., 2010[Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184-188.]). We report herein the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The bond lengths are comparable with those in related structures (Sivakumar, Devi et al., 2016[Sivakumar, P., Devi, R. N., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x161332.]; Sivakumar, Sudhahar et al., 2016[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.]). The title mol­ecular salt (Fig. 1[link]) comprises a 2-amino-3-methyl­pyridinium cation and a hydrogen phthalate anion. The cation is protonated at the pyridine N atom and the anion is deprotonated at one of the hy­droxy O atoms. The anion features an intra­molecular O—H—O hydrogen bond with the H atom located almost in the middle of the two O atoms. The dihedral angle between the pyridine and benzene rings is 19.17 (12)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling and 30% probability displacement ellipsoids.

In the asymmetric unit, the inter-ionic N1—H1⋯O4 and N2—H2A⋯O3 hydrogen bonds (Table 1[link]) link the cation and anion, generating an R22(8) ring motif (Fig. 2[link]). In the crystal, the N2—H2A⋯O3 and N2—H2B⋯O1i (Table 1[link]) hydrogen bonds generate an R24(18) ring motif (Fig. 3[link]). The structure is also influenced by a weak offset ππ [Cg1⋯Cg1(1 − x, 2 − y, 2 − z) = 3.7347 (14) Å; Cg1 is the centroid of the (C7–C12) ring] inter­action between the anions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O2 1.18 (3) 1.25 (3) 2.417 (2) 169 (2)
N1—H1⋯O4 0.99 (3) 1.70 (3) 2.685 (3) 171 (3)
N2—H2A⋯O3 0.91 (3) 2.01 (3) 2.916 (3) 173 (2)
N2—H2B⋯O1i 0.93 (4) 1.99 (4) 2.885 (3) 162 (3)
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing showing the various ring motifs.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along a axis. The hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized using 2-amino-3-meth­yl­pyridine (0.54 g) and phthalic acid (0.83 g) in an equimolar ratio. These reactants were dissolved in 15 ml acetone. The white precipitate that formed was dissolved in water and kept at room temperature. Crystals suitable for X-ray diffraction were harvested after 90 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C8H5O4
Mr 274.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 7.1675 (4), 8.8143 (6), 10.6613 (7)
α, β, γ (°) 91.968 (4), 96.362 (3), 94.745 (3)
V3) 666.46 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17030, 3982, 2056
Rint 0.032
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.02
No. of reflections 3982
No. of parameters 198
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Amino-3-methylpyridinium 2-carboxybenzoate top
Crystal data top
C6H9N2+·C8H5O4Z = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.367 Mg m3
a = 7.1675 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8143 (6) ÅCell parameters from 5483 reflections
c = 10.6613 (7) Åθ = 0.7–0.8°
α = 91.968 (4)°µ = 0.10 mm1
β = 96.362 (3)°T = 295 K
γ = 94.745 (3)°Block, colourless
V = 666.46 (7) Å30.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2056 reflections with I > 2σ(I)
ω and φ scanRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.5°, θmin = 1.9°
Tmin = 0.686, Tmax = 0.746h = 1010
17030 measured reflectionsk = 1212
3982 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3832P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3982 reflectionsΔρmax = 0.23 e Å3
198 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1981 (3)0.4914 (2)0.4055 (2)0.0475 (5)
C20.1063 (3)0.4009 (3)0.3006 (2)0.0541 (6)
C30.0722 (4)0.2491 (3)0.3165 (3)0.0643 (7)
H30.0089070.1882100.2495720.077*
C40.1284 (4)0.1811 (3)0.4291 (3)0.0713 (8)
H40.1056140.0766340.4370160.086*
C50.2171 (4)0.2715 (3)0.5265 (3)0.0652 (7)
H50.2567430.2291680.6025650.078*
C60.0549 (4)0.4731 (4)0.1789 (3)0.0785 (8)
H6A0.0033260.3966150.1173080.118*
H6B0.1664520.5207480.1496290.118*
H6C0.0315010.5483570.1911840.118*
C70.7494 (3)0.9694 (3)0.9900 (2)0.0530 (5)
H70.8251341.0607891.0018070.064*
C80.6526 (3)0.9306 (2)0.8717 (2)0.0454 (5)
C90.5434 (3)0.7897 (2)0.85357 (19)0.0449 (5)
C100.5318 (4)0.6995 (3)0.9578 (2)0.0551 (6)
H100.4584640.6069250.9474840.066*
C110.6243 (4)0.7420 (3)1.0749 (2)0.0624 (6)
H110.6109180.6802271.1429170.075*
C120.7365 (4)0.8762 (3)1.0907 (2)0.0606 (6)
H120.8037020.9044621.1688210.073*
C130.6793 (3)1.0500 (3)0.7754 (2)0.0550 (6)
C140.4398 (3)0.7183 (3)0.7314 (2)0.0513 (5)
N10.2482 (3)0.4225 (2)0.5137 (2)0.0549 (5)
H10.305 (4)0.489 (3)0.587 (3)0.081 (9)*
N20.2385 (3)0.6404 (2)0.4039 (2)0.0616 (6)
H2A0.295 (4)0.692 (3)0.475 (3)0.069 (8)*
H2B0.214 (5)0.690 (4)0.329 (4)0.102 (11)*
O10.8082 (3)1.1491 (2)0.7962 (2)0.0837 (6)
O20.5619 (3)1.0490 (2)0.67375 (17)0.0682 (5)
H20.458 (4)0.927 (3)0.658 (3)0.073 (8)*
O30.3884 (3)0.8012 (2)0.64200 (17)0.0697 (5)
O40.4074 (3)0.57795 (19)0.72482 (17)0.0698 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (11)0.0456 (11)0.0546 (12)0.0028 (9)0.0125 (9)0.0049 (9)
C20.0457 (12)0.0579 (13)0.0590 (13)0.0013 (10)0.0116 (10)0.0018 (11)
C30.0598 (15)0.0574 (14)0.0748 (17)0.0079 (11)0.0181 (13)0.0106 (13)
C40.0817 (19)0.0452 (13)0.090 (2)0.0019 (12)0.0298 (16)0.0021 (13)
C50.0791 (17)0.0515 (14)0.0687 (16)0.0057 (12)0.0204 (14)0.0156 (12)
C60.0835 (19)0.089 (2)0.0596 (16)0.0048 (16)0.0041 (14)0.0064 (14)
C70.0506 (12)0.0498 (12)0.0576 (13)0.0043 (10)0.0002 (10)0.0059 (10)
C80.0430 (11)0.0459 (11)0.0488 (11)0.0094 (9)0.0050 (9)0.0110 (9)
C90.0481 (11)0.0427 (11)0.0454 (11)0.0107 (9)0.0053 (9)0.0077 (9)
C100.0710 (15)0.0419 (11)0.0532 (13)0.0086 (10)0.0055 (11)0.0122 (10)
C110.0827 (17)0.0547 (14)0.0508 (13)0.0121 (12)0.0031 (12)0.0151 (11)
C120.0698 (15)0.0622 (15)0.0488 (13)0.0101 (12)0.0029 (11)0.0067 (11)
C130.0545 (13)0.0506 (13)0.0612 (14)0.0055 (10)0.0072 (11)0.0150 (10)
C140.0511 (12)0.0530 (13)0.0502 (12)0.0038 (10)0.0063 (10)0.0095 (10)
N10.0619 (12)0.0476 (11)0.0554 (11)0.0023 (9)0.0079 (9)0.0065 (9)
N20.0789 (15)0.0460 (11)0.0576 (13)0.0022 (10)0.0026 (11)0.0049 (10)
O10.0794 (13)0.0740 (13)0.0917 (14)0.0203 (10)0.0063 (11)0.0352 (11)
O20.0857 (12)0.0547 (10)0.0608 (10)0.0000 (9)0.0071 (9)0.0206 (8)
O30.0829 (12)0.0593 (11)0.0597 (10)0.0096 (9)0.0156 (9)0.0151 (8)
O40.0957 (14)0.0493 (10)0.0600 (10)0.0054 (9)0.0018 (9)0.0042 (8)
Geometric parameters (Å, º) top
C1—N21.322 (3)C8—C131.511 (3)
C1—N11.350 (3)C9—C101.394 (3)
C1—C21.417 (3)C9—C141.516 (3)
C2—C31.360 (3)C10—C111.372 (3)
C2—C61.488 (4)C10—H100.9300
C3—C41.395 (4)C11—C121.369 (4)
C3—H30.9300C11—H110.9300
C4—C51.353 (4)C12—H120.9300
C4—H40.9300C13—O11.214 (3)
C5—N11.345 (3)C13—O21.295 (3)
C5—H50.9300C14—O41.238 (3)
C6—H6A0.9600C14—O31.262 (3)
C6—H6B0.9600N1—H10.99 (3)
C6—H6C0.9600N2—H2A0.91 (3)
C7—C121.380 (3)N2—H2B0.93 (4)
C7—C81.388 (3)O2—H21.25 (3)
C7—H70.9300O3—H21.18 (3)
C8—C91.407 (3)
N2—C1—N1117.6 (2)C10—C9—C8117.8 (2)
N2—C1—C2123.9 (2)C10—C9—C14114.34 (19)
N1—C1—C2118.6 (2)C8—C9—C14127.84 (19)
C3—C2—C1117.4 (2)C11—C10—C9122.6 (2)
C3—C2—C6122.9 (2)C11—C10—H10118.7
C1—C2—C6119.7 (2)C9—C10—H10118.7
C2—C3—C4122.6 (3)C12—C11—C10119.3 (2)
C2—C3—H3118.7C12—C11—H11120.3
C4—C3—H3118.7C10—C11—H11120.3
C5—C4—C3118.0 (2)C11—C12—C7119.7 (2)
C5—C4—H4121.0C11—C12—H12120.2
C3—C4—H4121.0C7—C12—H12120.2
N1—C5—C4120.2 (3)O1—C13—O2120.6 (2)
N1—C5—H5119.9O1—C13—C8119.3 (2)
C4—C5—H5119.9O2—C13—C8120.1 (2)
C2—C6—H6A109.5O4—C14—O3122.6 (2)
C2—C6—H6B109.5O4—C14—C9117.2 (2)
H6A—C6—H6B109.5O3—C14—C9120.2 (2)
C2—C6—H6C109.5C5—N1—C1123.1 (2)
H6A—C6—H6C109.5C5—N1—H1119.8 (18)
H6B—C6—H6C109.5C1—N1—H1117.0 (18)
C12—C7—C8121.9 (2)C1—N2—H2A119.4 (17)
C12—C7—H7119.1C1—N2—H2B120 (2)
C8—C7—H7119.1H2A—N2—H2B121 (3)
C7—C8—C9118.69 (19)C13—O2—H2111.5 (12)
C7—C8—C13113.89 (19)C14—O3—H2112.0 (13)
C9—C8—C13127.4 (2)
N2—C1—C2—C3179.4 (2)C14—C9—C10—C11176.7 (2)
N1—C1—C2—C30.8 (3)C9—C10—C11—C121.6 (4)
N2—C1—C2—C61.7 (4)C10—C11—C12—C72.4 (4)
N1—C1—C2—C6178.1 (2)C8—C7—C12—C110.6 (4)
C1—C2—C3—C41.8 (4)C7—C8—C13—O116.2 (3)
C6—C2—C3—C4177.0 (3)C9—C8—C13—O1163.9 (2)
C2—C3—C4—C51.3 (4)C7—C8—C13—O2161.7 (2)
C3—C4—C5—N10.3 (4)C9—C8—C13—O218.3 (4)
C12—C7—C8—C92.1 (3)C10—C9—C14—O421.6 (3)
C12—C7—C8—C13177.8 (2)C8—C9—C14—O4155.8 (2)
C7—C8—C9—C102.8 (3)C10—C9—C14—O3157.6 (2)
C13—C8—C9—C10177.1 (2)C8—C9—C14—O324.9 (3)
C7—C8—C9—C14174.5 (2)C4—C5—N1—C11.4 (4)
C13—C8—C9—C145.5 (4)N2—C1—N1—C5179.0 (2)
C8—C9—C10—C111.0 (3)C2—C1—N1—C50.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O21.18 (3)1.25 (3)2.417 (2)169 (2)
N1—H1···O40.99 (3)1.70 (3)2.685 (3)171 (3)
N2—H2A···O30.91 (3)2.01 (3)2.916 (3)173 (2)
N2—H2B···O1i0.93 (4)1.99 (4)2.885 (3)162 (3)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411–2413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Devi, R. N., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x161332.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.  Google Scholar
First citationSpanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds