organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-(1H-Benzo[d]imidazol-2-yl)-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinoline

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., Mexico
*Correspondence e-mail: muralivenkat@ugto.mx

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 15 January 2017; accepted 21 March 2017; online 28 March 2017)

The title compound, C19H19N3, is a 2-heteroaryl benzimidazole derivative obtained through a straightforward and efficient protocol starting from julolidine-9-carbaldehyde and 1,2-phenyl­endi­amine. The mean planes of the heterocyclic moieties in the mol­ecule, benzimidazole and julolidine, form a dihedral angle of 40.9 (1)°. In the crystal, N—H⋯N hydrogen bonds link the imidazole rings, forming chains along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole derivatives play an important role as pharmacophores in pharmaceuticals, and have been shown to possess different biological properties, such as anti­oxidant (Ayhan-Kilcigil et al., 2004[Ayhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129-135.]) and anti­fungal (Preston et al., 1974[Preston, P. N. (1974). Chem. Rev. 74, 279-314.]) activity. We present here the crystal structure of a 2-heteroaryl benzimidazole derivative (Fig. 1[link]). The compound contains two heterocycles, which are skewed with an N1—C1—C8—C9 torsion angle of −34.7 (5)°. The dihedral angle between the mean planes of the benzimidazole and the julolidine moieties is 40.9 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the compound, showing displacement ellipsoids drawn at the 50% probability level.

In the crystal, a supra­molecular structure based on inter­molecular N2—H2⋯N1i hydrogen bonds is formed (Table 1[link]), featuring zigzag chains of mol­ecules in the [001] direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 1.98 2.852 (4) 173
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal-packing diagram, viewed along the c axis. The chain motifs are normal to the projection view.

Synthesis and crystallization

The title compound was synthesized (Fig. 3[link]) by mixing equimolar amounts of o-phenyl­enedi­amine (1 mmol) and 9-julolidine carboxaldehyde (1 mmol) in ethanol. The resulting mixture was refluxed for 3 h. After cooling to room temperature, the solvents were removed under reduced pressure, and the residue purified by silica gel chromatography with petroleum ether/ethyl­acetate (6:4, v:v) as eluent, to afford the title compound as a colourless solid (95% yield). The compound was recrystallized from petroleum ether/diethyl ether (1:1, v:v).

[Figure 3]
Figure 3
The reaction scheme.

1H NMR (500 MHz, CDCl3), δ (p.p.m.): 7.57 (s, 1H), 7.50 (s, 2H), 7.26 (s, 2H), 7.20 (dd, J = 6.0, 3.1 Hz, 2H), 3.24–3.21 (m, 4H), 2.78 (t, J = 6.3 Hz, 4H), 2.00–1.94 (m, 4H). 13C NMR (126 MHz, CDCl3), δ (p.p.m.): 152.8, 144.8, 125.5, 122.4, 121.4, 50.0, 27.8, 21.8.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl­ene C atoms (C11, C12, C13, C16, C17, C18) in the julolidine group were refined with restrained displacement parameters: rigid-bond restraints were applied and atoms closer than 2 Å were restrained to have similar Uij parameters within a standard deviation of 0.04 Å2; finally, these C atoms were restrained to approximate an isotropic behaviour (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C19H19N3
Mr 289.37
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 14.0540 (11), 11.2639 (6), 9.6184 (5)
V3) 1522.62 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.53 × 0.34 × 0.26
 
Data collection
Diffractometer Rigaku OD SuperNova, Single source at offset, EosS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.878, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4617, 2727, 2528
Rint 0.021
(sin θ/λ)max−1) 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 1.05
No. of reflections 2727
No. of parameters 200
No. of restraints 67
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

9-(1H-Benzo[d]imidazol-2-yl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline top
Crystal data top
C19H19N3Dx = 1.262 Mg m3
Mr = 289.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2311 reflections
a = 14.0540 (11) Åθ = 4.4–28.4°
b = 11.2639 (6) ŵ = 0.08 mm1
c = 9.6184 (5) ÅT = 100 K
V = 1522.62 (16) Å3Block, colourless
Z = 40.53 × 0.34 × 0.26 mm
F(000) = 616
Data collection top
Rigaku OD SuperNova, Single source at offset, EosS2
diffractometer
2727 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2528 reflections with I > 2σ(I)
Detector resolution: 8.0945 pixels mm-1Rint = 0.021
ω scansθmax = 29.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1810
Tmin = 0.878, Tmax = 1.000k = 1513
4617 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.6633P]
where P = (Fo2 + 2Fc2)/3
2727 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.79 e Å3
67 restraintsΔρmin = 0.34 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1962 (2)0.8178 (2)0.3418 (3)0.0216 (6)
N20.2282 (2)0.8416 (2)0.5680 (3)0.0200 (6)
H20.2531820.8283780.6504310.029 (11)*
N30.4176 (2)0.3248 (2)0.5017 (3)0.0286 (7)
C10.2398 (2)0.7740 (2)0.4529 (3)0.0184 (6)
C20.1513 (2)0.9199 (3)0.3887 (3)0.0215 (7)
C30.1697 (2)0.9357 (3)0.5316 (3)0.0213 (7)
C40.1295 (3)1.0267 (3)0.6076 (4)0.0285 (8)
H40.1420221.0359310.7040760.034*
C50.0695 (3)1.1045 (3)0.5363 (4)0.0345 (9)
H50.0403861.1681410.5852250.041*
C60.0517 (3)1.0907 (3)0.3954 (5)0.0341 (8)
H60.0107901.1456650.3502160.041*
C70.0913 (3)0.9995 (3)0.3184 (4)0.0284 (8)
H70.0784370.9911190.2219690.034*
C80.2907 (2)0.6604 (2)0.4590 (3)0.0189 (6)
C90.2574 (3)0.5634 (3)0.3814 (4)0.0239 (7)
H90.2054270.5739530.3195460.029*
C100.2991 (3)0.4531 (3)0.3937 (4)0.0253 (7)
C110.2605 (3)0.3483 (3)0.3122 (5)0.0415 (11)
H11A0.1906980.3562950.3016940.050*
H11B0.2891950.3471090.2182470.050*
C120.2833 (3)0.2335 (3)0.3871 (6)0.0477 (12)
H12A0.2447270.2286600.4730140.057*
H12B0.2654940.1656650.3269890.057*
C130.3849 (3)0.2240 (3)0.4236 (5)0.0405 (10)
H13A0.3951260.1509830.4789320.049*
H13B0.4229140.2170040.3372630.049*
C140.3775 (2)0.4364 (3)0.4838 (3)0.0211 (7)
C150.4143 (2)0.5353 (3)0.5566 (3)0.0223 (7)
C160.5092 (3)0.3136 (3)0.5706 (5)0.0398 (9)
H16A0.5602270.3279350.5016890.048*
H16B0.5162130.2312040.6049270.048*
C170.5219 (4)0.3968 (4)0.6891 (6)0.0535 (13)
H17A0.5882220.3913280.7233920.064*
H17B0.4790370.3732270.7659480.064*
C180.5012 (3)0.5218 (3)0.6485 (4)0.0338 (9)
H18A0.5571540.5544890.5990260.041*
H18B0.4918070.5695390.7338950.041*
C190.3690 (2)0.6436 (3)0.5452 (3)0.0208 (6)
H190.3920530.7088100.5979220.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0255 (15)0.0238 (12)0.0156 (12)0.0003 (11)0.0014 (12)0.0011 (10)
N20.0275 (15)0.0200 (11)0.0126 (12)0.0018 (10)0.0012 (12)0.0003 (10)
N30.0309 (16)0.0221 (13)0.0328 (16)0.0040 (12)0.0029 (14)0.0037 (11)
C10.0201 (15)0.0214 (13)0.0138 (13)0.0034 (11)0.0027 (13)0.0010 (11)
C20.0269 (17)0.0201 (14)0.0175 (14)0.0017 (12)0.0023 (14)0.0019 (12)
C30.0238 (17)0.0211 (13)0.0191 (14)0.0007 (13)0.0039 (14)0.0014 (12)
C40.036 (2)0.0284 (16)0.0213 (16)0.0023 (15)0.0019 (16)0.0037 (13)
C50.040 (2)0.0254 (15)0.038 (2)0.0084 (15)0.0080 (19)0.0031 (15)
C60.037 (2)0.0283 (17)0.0370 (19)0.0070 (15)0.0026 (19)0.0035 (15)
C70.034 (2)0.0272 (15)0.0242 (16)0.0003 (15)0.0042 (16)0.0037 (13)
C80.0220 (16)0.0210 (13)0.0137 (12)0.0005 (12)0.0037 (13)0.0005 (11)
C90.0244 (17)0.0264 (14)0.0209 (14)0.0006 (13)0.0047 (14)0.0056 (13)
C100.0277 (18)0.0234 (15)0.0247 (15)0.0009 (13)0.0044 (16)0.0051 (13)
C110.046 (3)0.0287 (16)0.050 (3)0.0014 (17)0.020 (2)0.0132 (17)
C120.041 (2)0.0299 (18)0.072 (3)0.0051 (16)0.004 (3)0.013 (2)
C130.056 (3)0.0210 (16)0.044 (2)0.0042 (16)0.010 (2)0.0074 (15)
C140.0245 (17)0.0221 (13)0.0167 (15)0.0002 (12)0.0044 (14)0.0009 (11)
C150.0236 (16)0.0273 (14)0.0160 (14)0.0017 (12)0.0000 (14)0.0006 (12)
C160.046 (2)0.0370 (18)0.0358 (19)0.0163 (18)0.012 (2)0.0017 (17)
C170.054 (3)0.049 (2)0.057 (3)0.012 (2)0.023 (3)0.002 (2)
C180.034 (2)0.0352 (18)0.0320 (19)0.0059 (17)0.0124 (18)0.0063 (15)
C190.0250 (16)0.0235 (13)0.0139 (14)0.0047 (12)0.0004 (14)0.0026 (11)
Geometric parameters (Å, º) top
N1—C11.327 (4)C10—C141.415 (5)
N1—C21.387 (4)C10—C111.517 (5)
N2—C11.354 (4)C11—C121.514 (6)
N2—C31.386 (4)C11—H11A0.9900
N2—H20.8800C11—H11B0.9900
N3—C141.388 (4)C12—C131.475 (6)
N3—C131.438 (5)C12—H12A0.9900
N3—C161.452 (5)C12—H12B0.9900
C1—C81.467 (4)C13—H13A0.9900
C2—C71.405 (5)C13—H13B0.9900
C2—C31.410 (5)C14—C151.413 (4)
C3—C41.380 (5)C15—C191.380 (4)
C4—C51.396 (5)C15—C181.516 (5)
C4—H40.9500C16—C171.487 (6)
C5—C61.387 (6)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—C71.383 (5)C17—C181.490 (6)
C6—H60.9500C17—H17A0.9900
C7—H70.9500C17—H17B0.9900
C8—C191.390 (5)C18—H18A0.9900
C8—C91.403 (4)C18—H18B0.9900
C9—C101.379 (4)C19—H190.9500
C9—H90.9500
C1—N1—C2104.9 (3)C10—C11—H11B109.7
C1—N2—C3107.2 (3)H11A—C11—H11B108.2
C1—N2—H2126.4C13—C12—C11112.4 (4)
C3—N2—H2126.4C13—C12—H12A109.1
C14—N3—C13121.4 (3)C11—C12—H12A109.1
C14—N3—C16119.7 (3)C13—C12—H12B109.1
C13—N3—C16116.9 (3)C11—C12—H12B109.1
N1—C1—N2113.2 (3)H12A—C12—H12B107.9
N1—C1—C8125.6 (3)N3—C13—C12112.1 (3)
N2—C1—C8121.1 (3)N3—C13—H13A109.2
N1—C2—C7130.3 (3)C12—C13—H13A109.2
N1—C2—C3109.8 (3)N3—C13—H13B109.2
C7—C2—C3119.9 (3)C12—C13—H13B109.2
C4—C3—N2132.6 (3)H13A—C13—H13B107.9
C4—C3—C2122.4 (3)N3—C14—C15120.2 (3)
N2—C3—C2105.0 (3)N3—C14—C10120.8 (3)
C3—C4—C5117.0 (3)C15—C14—C10118.9 (3)
C3—C4—H4121.5C19—C15—C14119.2 (3)
C5—C4—H4121.5C19—C15—C18120.5 (3)
C6—C5—C4121.2 (3)C14—C15—C18120.3 (3)
C6—C5—H5119.4N3—C16—C17113.7 (3)
C4—C5—H5119.4N3—C16—H16A108.8
C7—C6—C5122.3 (4)C17—C16—H16A108.8
C7—C6—H6118.9N3—C16—H16B108.8
C5—C6—H6118.9C17—C16—H16B108.8
C6—C7—C2117.3 (3)H16A—C16—H16B107.7
C6—C7—H7121.3C16—C17—C18111.8 (4)
C2—C7—H7121.3C16—C17—H17A109.3
C19—C8—C9118.3 (3)C18—C17—H17A109.3
C19—C8—C1121.9 (3)C16—C17—H17B109.3
C9—C8—C1119.7 (3)C18—C17—H17B109.3
C10—C9—C8121.0 (3)H17A—C17—H17B107.9
C10—C9—H9119.5C17—C18—C15113.9 (3)
C8—C9—H9119.5C17—C18—H18A108.8
C9—C10—C14120.2 (3)C15—C18—H18A108.8
C9—C10—C11120.3 (3)C17—C18—H18B108.8
C14—C10—C11119.5 (3)C15—C18—H18B108.8
C12—C11—C10110.0 (3)H18A—C18—H18B107.7
C12—C11—H11A109.7C15—C19—C8122.2 (3)
C10—C11—H11A109.7C15—C19—H19118.9
C12—C11—H11B109.7C8—C19—H19118.9
C2—N1—C1—N21.3 (4)C14—C10—C11—C1225.5 (6)
C2—N1—C1—C8174.5 (3)C10—C11—C12—C1351.3 (5)
C3—N2—C1—N12.1 (4)C14—N3—C13—C1230.0 (5)
C3—N2—C1—C8174.0 (3)C16—N3—C13—C12166.2 (4)
C1—N1—C2—C7176.8 (4)C11—C12—C13—N354.2 (6)
C1—N1—C2—C30.1 (4)C13—N3—C14—C15176.7 (3)
C1—N2—C3—C4175.1 (4)C16—N3—C14—C1513.4 (5)
C1—N2—C3—C21.9 (3)C13—N3—C14—C103.8 (5)
N1—C2—C3—C4176.3 (3)C16—N3—C14—C10167.1 (3)
C7—C2—C3—C41.0 (5)C9—C10—C14—N3177.2 (3)
N1—C2—C3—N21.1 (4)C11—C10—C14—N32.0 (5)
C7—C2—C3—N2178.4 (3)C9—C10—C14—C152.3 (5)
N2—C3—C4—C5177.1 (4)C11—C10—C14—C15178.5 (4)
C2—C3—C4—C50.6 (5)N3—C14—C15—C19175.2 (3)
C3—C4—C5—C60.1 (6)C10—C14—C15—C194.3 (5)
C4—C5—C6—C70.4 (7)N3—C14—C15—C183.4 (5)
C5—C6—C7—C20.0 (6)C10—C14—C15—C18177.0 (3)
N1—C2—C7—C6175.9 (4)C14—N3—C16—C1738.2 (5)
C3—C2—C7—C60.7 (5)C13—N3—C16—C17157.8 (4)
N1—C1—C8—C19148.5 (3)N3—C16—C17—C1851.9 (6)
N2—C1—C8—C1936.0 (5)C16—C17—C18—C1541.9 (6)
N1—C1—C8—C934.7 (5)C19—C15—C18—C17160.0 (4)
N2—C1—C8—C9140.9 (3)C14—C15—C18—C1718.6 (5)
C19—C8—C9—C102.2 (5)C14—C15—C19—C83.1 (5)
C1—C8—C9—C10174.7 (3)C18—C15—C19—C8178.2 (3)
C8—C9—C10—C141.0 (6)C9—C8—C19—C150.1 (5)
C8—C9—C10—C11178.2 (4)C1—C8—C19—C15176.8 (3)
C9—C10—C11—C12153.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.881.982.852 (4)173
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors are grateful to the Universidad de Guanajuato for access to the single-crystal analysis facility.

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (award No. 123732); Universidad de Guanajuato (award No. DAIP-1105/2016).

References

First citationAyhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129–135.  PubMed CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPreston, P. N. (1974). Chem. Rev. 74, 279–314.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds