organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3S)-3,8-Di­bromo-4-phenyl-2,3-di­hydro-1H-1,5-benzodi­aza­pin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: essaghouani.hanine@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 18 December 2016; accepted 9 March 2017; online 24 March 2017)

In the title compound, C15H10Br2N2O, one Br atom is disordered over two non-chemically equivalent sites, and as a consequence, the crystallized sample contains a mixture of isomers, viz. 98.4% of 3,8-di­bromo-4-phenyl-2,3-di­hydro-1H-1,5-benzodi­aza­pin-2-one and 1.6% of 3,6-di­bromo-4-phenyl-2,3-di­hydro-1H-1,5-benzodi­aza­pin-2-one. The seven-membered ring adopts a boat conformation. In the crystal, pairwise N—H⋯O hydrogen bonds form centrosymmetric dimers, which are associated in the crystal through a combination of ππ stacking and C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently there has been considerable inter­est in the chemistry of 1,5-benzodiazepines. This is undoubtedly due to their broad variety of biological functions such as anti­depressant (Basawaraj et al., 2008[Basawaraj, R., Naubade, K. & Sangapure, S. S. (2008). Indian J. Heterocycl. Chem. 17, 217-220.]), anti-inflammatory (Ha et al., 2010[Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., Ahn, K.-H. & Kim, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 3969-3971.]), and anti­helmintic activities (Kumar & Joshi, 2008[Kumar, R. & Joshi, Y. C. (2008). J. Serb. Chem. Soc. 73, 937-943.]). As a continuation of our studies of new 1,5-benzodiazepin-2-one derivatives (Essaghouani et al., 2016[Essaghouani, A., Bouzian, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160661.]), we report here on the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids. Only the main isomer is represented.

The seven-membered ring adopts a boat conformation with the Br2 substituent in axial position. A Cremer–Pople puckering analysis of this conformation yielded the parameters q2 = 0.711 (2), q3 = 0.177 (2) Å, φ2 = 202.1 (2) and φ3 = 309.7 (7)°.

In the crystal, the mol­ecules form dimers through N2—H2A⋯O1i [symmetry code: (i) −x, 1 − y, −z] hydrogen bonds (Table 1[link] and Fig. 2[link]). These units are further associated by a combination of a ππ-stacking inter­action between the C10–C15 ring and its counterpart at position 2 − x, 2 − y, 1 − z [centroid-to-centroid distance: 3.592 (2) Å; slippage: 0.95 Å] and a C4—H4⋯π(ring) inter­action with the C10–C15 ring at x, −1 + y, z to form a three-dimensional network structure (Table 1[link], Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.88 1.99 2.842 (2) 164
C4—H4⋯Cg1ii 0.95 0.96 3.824 (3) 151
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.
[Figure 2]
Figure 2
Detail of the N—H⋯O hydrogen bonding (blue dotted lines), ππ-stacking (purple dotted line) and C—H⋯π(ring) (black dotted line) inter­actions. [Symmetry codes: (i) −x, 1 − y, −z; (ii) 2 − x, 2 − y, 1 − z; (iii) x, −1 + y, z].
[Figure 3]
Figure 3
The packing viewed along the a axis.

It appears from the final structure refinement that an impurity was present in the crystal (ca 1.6% of the crystal content) which, from trial refinements, was found to be an isomer of the title compound with bromine attached to C5 instead of C3. Inclusion of the alternate location of Br1 together with the constraint of the total occupancy of disordered sites to unity improved the final refinement.

Synthesis and crystallization

A mixture of 4-phenyl-2,3-di­hydro-1H-l,5-benzodiazepin-2-one (2.36 g, 10 mmol) and N-bromo­succinimide (3.55 g, 20 mmol) in anhydrous CHCl3 (40 ml) was refluxed for 6 h. After cooling, the succinimide crystals formed were removed by filtration. The filtrate was evaporated under reduced pressure. The resulting residue was purified by column chromatography (EtOAc/hexane 1/9), to afford the title compound as pale-yellow crystals (yield: 45%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final stages of the refinement the largest residual peak appeared about 1.7 Å from C5 and in the plane of the C1–C6 ring. Based on trial refinements, this residual was assigned to an alternate location of Br1 with a small occupancy factor. The refinement of this occupancy for the minor isomer converged to 0.0159 (7), while the major isomer contributes to the structure factors with an occupancy of 0.9841 (7).

Table 2
Experimental details

Crystal data
Chemical formula C15H10Br2N2O
Mr 394.07
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.8931 (8), 9.9295 (10), 10.2411 (11)
α, β, γ (°) 101.751 (1), 105.968 (2), 109.482 (1)
V3) 687.77 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.89
Crystal size (mm) 0.35 × 0.31 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.39, 0.54
No. of measured, independent and observed [I > 2σ(I)] reflections 13311, 3674, 3263
Rint 0.023
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.07
No. of reflections 3674
No. of parameters 185
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.60, −0.70
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3S)-3,8-Dibromo-4-phenyl-2,3-dihydro-1H-1,5-benzodiazapin-2-one top
Crystal data top
C15H10Br2N2OZ = 2
Mr = 394.07F(000) = 384
Triclinic, P1Dx = 1.903 Mg m3
a = 7.8931 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9295 (10) ÅCell parameters from 8714 reflections
c = 10.2411 (11) Åθ = 2.2–29.3°
α = 101.751 (1)°µ = 5.89 mm1
β = 105.968 (2)°T = 100 K
γ = 109.482 (1)°Thick plate, light yellow
V = 687.77 (12) Å30.35 × 0.31 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3674 independent reflections
Radiation source: fine-focus sealed tube3263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.39, Tmax = 0.54l = 1414
13311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.037P)2 + 0.8581P]
where P = (Fo2 + 2Fc2)/3
3674 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 1.60 e Å3
1 restraintΔρmin = 0.70 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.88 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stages of the refinement, a noticeable peak remained about 1.7 Å from C5 while Uiso for Br1 was distinctly larger than that of Br2. These suggested a small presence of the isomer with Br on C5 instead of C3 and refinement of this model with restraints to make the geometries of the two components comparable led to a ca. 1.4% contribution by the minor isomer.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.30208 (3)0.00789 (2)0.10256 (3)0.02206 (8)0.9841 (7)
Br1B0.9623 (7)0.4998 (15)0.2875 (17)0.02206 (8)0.0159 (7)
Br20.43259 (3)0.63603 (3)0.45110 (2)0.01890 (7)
O10.1287 (2)0.67702 (18)0.1270 (2)0.0219 (4)
N10.6794 (3)0.6709 (2)0.2233 (2)0.0152 (4)
N20.2434 (3)0.4979 (2)0.0929 (2)0.0148 (4)
H2A0.14090.44500.01330.018*
C10.3751 (3)0.4317 (2)0.1289 (2)0.0136 (4)
C20.2943 (3)0.2749 (2)0.0982 (2)0.0146 (4)
H20.15780.21930.05690.018*
C30.4140 (3)0.2009 (2)0.1283 (2)0.0167 (4)
H3B0.35760.09410.11190.020*0.0159 (7)
C40.6151 (4)0.2789 (3)0.1822 (3)0.0198 (5)
H40.69670.22750.20050.024*
C50.6922 (3)0.4333 (3)0.2082 (3)0.0186 (4)
H5A0.82950.48180.24230.022*0.9841 (7)
C60.5768 (3)0.5141 (2)0.1870 (2)0.0143 (4)
C70.6228 (3)0.7685 (2)0.2771 (2)0.0138 (4)
C80.4336 (3)0.7311 (2)0.3006 (2)0.0147 (4)
H80.42310.82850.33530.018*
C90.2562 (3)0.6318 (2)0.1656 (3)0.0153 (4)
C100.7556 (3)0.9317 (2)0.3269 (2)0.0153 (4)
C110.7572 (4)1.0337 (3)0.4444 (3)0.0255 (5)
H110.66531.00010.48720.031*
C120.8911 (4)1.1833 (3)0.4991 (3)0.0300 (6)
H120.89381.25080.58090.036*
C131.0218 (4)1.2339 (3)0.4332 (3)0.0258 (6)
H131.11061.33700.46760.031*
C141.0214 (4)1.1344 (3)0.3188 (3)0.0293 (6)
H141.11111.16880.27450.035*
C150.8906 (4)0.9830 (3)0.2666 (3)0.0267 (5)
H150.89440.91470.18880.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02331 (13)0.01058 (11)0.02899 (14)0.00794 (9)0.00466 (10)0.00528 (9)
Br1B0.02331 (13)0.01058 (11)0.02899 (14)0.00794 (9)0.00466 (10)0.00528 (9)
Br20.01833 (12)0.02158 (12)0.01888 (12)0.00794 (9)0.00865 (9)0.00892 (9)
O10.0149 (8)0.0127 (7)0.0306 (10)0.0059 (6)0.0009 (7)0.0046 (7)
N10.0135 (8)0.0149 (9)0.0142 (9)0.0041 (7)0.0038 (7)0.0039 (7)
N20.0124 (8)0.0118 (8)0.0155 (9)0.0041 (7)0.0000 (7)0.0035 (7)
C10.0146 (10)0.0135 (9)0.0129 (10)0.0071 (8)0.0040 (8)0.0038 (8)
C20.0163 (10)0.0117 (9)0.0139 (10)0.0052 (8)0.0046 (8)0.0027 (8)
C30.0215 (11)0.0115 (9)0.0153 (10)0.0067 (8)0.0057 (9)0.0027 (8)
C40.0213 (11)0.0180 (11)0.0200 (11)0.0120 (9)0.0053 (9)0.0025 (9)
C50.0151 (10)0.0186 (11)0.0208 (11)0.0082 (9)0.0062 (9)0.0027 (9)
C60.0152 (10)0.0140 (10)0.0126 (10)0.0052 (8)0.0057 (8)0.0026 (8)
C70.0126 (10)0.0129 (9)0.0134 (10)0.0036 (8)0.0029 (8)0.0051 (8)
C80.0142 (10)0.0113 (9)0.0161 (10)0.0048 (8)0.0034 (8)0.0034 (8)
C90.0112 (9)0.0119 (9)0.0196 (11)0.0024 (8)0.0034 (8)0.0063 (8)
C100.0126 (10)0.0122 (9)0.0172 (10)0.0037 (8)0.0009 (8)0.0055 (8)
C110.0166 (11)0.0168 (11)0.0369 (15)0.0050 (9)0.0098 (11)0.0000 (10)
C120.0178 (12)0.0178 (12)0.0432 (16)0.0058 (9)0.0070 (11)0.0039 (11)
C130.0175 (11)0.0129 (10)0.0335 (14)0.0010 (9)0.0037 (10)0.0079 (10)
C140.0275 (14)0.0253 (13)0.0238 (13)0.0027 (10)0.0081 (11)0.0104 (10)
C150.0287 (14)0.0231 (12)0.0171 (12)0.0003 (10)0.0087 (10)0.0020 (9)
Geometric parameters (Å, º) top
Br1A—C31.891 (2)C5—C61.404 (3)
Br1B—C51.879 (4)C5—H5A0.9503
Br2—C81.964 (2)C7—C101.490 (3)
O1—C91.235 (3)C7—C81.513 (3)
N1—C71.284 (3)C8—C91.518 (3)
N1—C61.406 (3)C8—H81.0000
N2—C91.342 (3)C10—C151.381 (3)
N2—C11.411 (3)C10—C111.401 (3)
N2—H2A0.8800C11—C121.387 (3)
C1—C21.398 (3)C11—H110.9500
C1—C61.403 (3)C12—C131.396 (4)
C2—C31.387 (3)C12—H120.9500
C2—H20.9500C13—C141.369 (4)
C3—C41.395 (3)C13—H130.9500
C3—H3B0.9600C14—C151.394 (4)
C4—C51.383 (3)C14—H140.9500
C4—H40.9500C15—H150.9500
C7—N1—C6123.5 (2)C10—C7—C8116.56 (19)
C9—N2—C1127.68 (19)C7—C8—C9113.84 (19)
C9—N2—H2A116.2C7—C8—Br2110.89 (14)
C1—N2—H2A116.1C9—C8—Br2109.57 (14)
C2—C1—C6120.4 (2)C7—C8—H8107.4
C2—C1—N2116.27 (19)C9—C8—H8107.4
C6—C1—N2123.30 (19)Br2—C8—H8107.4
C3—C2—C1119.8 (2)O1—C9—N2122.4 (2)
C3—C2—H2120.1O1—C9—C8118.9 (2)
C1—C2—H2120.1N2—C9—C8118.69 (19)
C2—C3—C4121.1 (2)C15—C10—C11118.5 (2)
C2—C3—Br1A119.18 (17)C15—C10—C7120.8 (2)
C4—C3—Br1A119.64 (17)C11—C10—C7120.4 (2)
C2—C3—H3B119.4C12—C11—C10120.9 (2)
C4—C3—H3B119.4C12—C11—H11119.6
C5—C4—C3118.1 (2)C10—C11—H11119.6
C5—C4—H4120.9C11—C12—C13119.5 (3)
C3—C4—H4120.9C11—C12—H12120.2
C4—C5—C6122.7 (2)C13—C12—H12120.2
C4—C5—Br1B106.1 (4)C14—C13—C12119.8 (2)
C6—C5—Br1B131.0 (5)C14—C13—H13120.1
C4—C5—H5A115.6C12—C13—H13120.1
C6—C5—H5A121.8C13—C14—C15120.7 (3)
C1—C6—C5117.7 (2)C13—C14—H14119.7
C1—C6—N1127.2 (2)C15—C14—H14119.7
C5—C6—N1115.1 (2)C10—C15—C14120.6 (2)
N1—C7—C10118.3 (2)C10—C15—H15119.7
N1—C7—C8125.11 (19)C14—C15—H15119.7
C9—N2—C1—C2143.1 (2)N1—C7—C8—C956.2 (3)
C9—N2—C1—C639.4 (3)C10—C7—C8—C9126.7 (2)
C6—C1—C2—C31.4 (3)N1—C7—C8—Br267.9 (3)
N2—C1—C2—C3179.0 (2)C10—C7—C8—Br2109.17 (18)
C1—C2—C3—C43.3 (3)C1—N2—C9—O1177.4 (2)
C1—C2—C3—Br1A174.27 (17)C1—N2—C9—C82.4 (3)
C2—C3—C4—C51.6 (4)C7—C8—C9—O1123.5 (2)
Br1A—C3—C4—C5176.00 (18)Br2—C8—C9—O1111.7 (2)
C3—C4—C5—C62.1 (4)C7—C8—C9—N256.7 (3)
C3—C4—C5—Br1B177.3 (6)Br2—C8—C9—N268.1 (2)
C2—C1—C6—C52.1 (3)N1—C7—C10—C1527.1 (3)
N2—C1—C6—C5175.4 (2)C8—C7—C10—C15155.6 (2)
C2—C1—C6—N1179.9 (2)N1—C7—C10—C11147.3 (2)
N2—C1—C6—N12.5 (4)C8—C7—C10—C1130.0 (3)
C4—C5—C6—C13.9 (4)C15—C10—C11—C120.1 (4)
Br1B—C5—C6—C1177.7 (7)C7—C10—C11—C12174.6 (2)
C4—C5—C6—N1178.0 (2)C10—C11—C12—C132.2 (4)
Br1B—C5—C6—N14.2 (8)C11—C12—C13—C142.5 (4)
C7—N1—C6—C136.6 (3)C12—C13—C14—C150.5 (4)
C7—N1—C6—C5145.5 (2)C11—C10—C15—C142.0 (4)
C6—N1—C7—C10172.9 (2)C7—C10—C15—C14176.6 (2)
C6—N1—C7—C84.2 (3)C13—C14—C15—C101.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.881.992.842 (2)164
C4—H4···Cg1ii0.950.963.824 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBasawaraj, R., Naubade, K. & Sangapure, S. S. (2008). Indian J. Heterocycl. Chem. 17, 217–220.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEssaghouani, A., Bouzian, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160661.  Google Scholar
First citationHa, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., Ahn, K.-H. & Kim, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 3969–3971.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, R. & Joshi, Y. C. (2008). J. Serb. Chem. Soc. 73, 937–943.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds