metal-organic compounds
trans-Bis(N-{2-[2-(3-methyl-1H-pyrazol-5-yl-κN2)acetamido-κO]phenyl}benzamide)bis(perchlorato-κO)copper(II)
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: chkiratekarim@gmail.com
In the centrosymmetric title compound, [Cu(C19H18N4O2)2(ClO4)2], the copper ion sits at the center of an axially elongated octahedron with monodentate perchlorate ions weakly coordinated in the axial positions. In the crystal, chains running parallel to (001) are formed by N—H⋯O hydrogen bonds; these chains are linked into sheets parallel to (101) by C—H⋯O interactions.
Keywords: crystal structure; hydrogen bonding; copper complex.
CCDC reference: 1533763
Structure description
Pyrazolylacetamide derivatives have been evaluated for their in vitro activity as antimycobacterial agents against Mycobacterium smegmatis and also as anti-tuberculosis agents with low cytotoxicity (Emmadi et al., 2015). They also have therapeutic properties for the treatment of Cryptosporidium parasites (Sun et al., 2014). Their metal complexes have proven antimicrobial activities (Dholakiya et al., 2004) and may also have applications in catalysis (Jia et al., 2004). Continuing our research in this field (Chkirate et al., 2001), we have synthesized a copper perchlorate complex having as a ligand trans-bis-N-{2-[2-(5-methyl-1H-pyrazol-3-yl)acetamido]phenyl}benzamide obtained by reacting benzoyl chloride with N-2-aminophenyl-5-methyl-pyrazol-3-yl acetamide, the latter being obtained by the action of hydrazine on 4-(oxopropylidene)-1,5-benzodiazepin-2-one (El Abbassi et al., 1989).
The title compound (Fig. 1) has crystallographically imposed inversion symmetry with the organic ligands chelating through the tertiary nitrogen of the imidazole moiety (N1) and the oxygen (O1) of the proximate carbonyl group. Weak coordination of the perchlorate anions completes an axially elongated octahedral environment about the copper. The axial Cu1—O4 distance of 2.505 (3) Å is considerably longer than the equatorial Cu1—O1 distance of 1.9653 (17) Å, which is consistent with the action of the Jahn–Teller effect and is within the range 2.483 (13)–2.621 (6) Å previously cited for copper-bound perchlorate ions (Hueso-Ureña et al., 1999; Hong et al., 1987; Lu et al., 1987; Holló et al., 2013).
In the crystal, pairwise N3—H3A⋯O2i hydrogen bonds form chains of complexes running parallel to the c axis, which are then associated via weak, pairwise C5—H5A⋯O2ii hydrogen bonds, forming layers parallel to (101) (Table 1 and Fig. 2).
Synthesis and crystallization
0.125 mmol of Cu(ClO4)2·6H2O dissolved in 2.5 ml of ethanol were added to a solution of 5 ml of methanol containing 0.25 mmol of trans-bis-N-{2-[2-(5-methyl-1H-pyrazol-3-yl)acetamido]phenyl}benzamide. The mixture was heated slightly and then left at room temperature. After filtration, blue–green single crystals were obtained.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1533763
https://doi.org/10.1107/S2414314617002851/zq4016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002851/zq4016Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002851/zq4016Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C19H18N4O2)2(ClO4)2] | Z = 1 |
Mr = 931.19 | F(000) = 479 |
Triclinic, P1 | Dx = 1.567 Mg m−3 |
a = 8.6572 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.8108 (2) Å | Cell parameters from 5387 reflections |
c = 14.2054 (3) Å | θ = 5.5–71.9° |
α = 79.406 (1)° | µ = 2.68 mm−1 |
β = 86.240 (1)° | T = 298 K |
γ = 67.895 (1)° | Plate, pale green-blue |
V = 986.78 (4) Å3 | 0.24 × 0.06 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3702 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2999 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 71.9°, θmin = 3.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −10→10 |
Tmin = 0.77, Tmax = 0.95 | l = −17→17 |
7804 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0604P)2 + 0.5402P] where P = (Fo2 + 2Fc2)/3 |
3702 reflections | (Δ/σ)max < 0.001 |
278 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.0000 | 0.03299 (17) | |
O1 | 0.5561 (2) | 0.5620 (2) | 0.11555 (12) | 0.0359 (4) | |
O2 | 0.2816 (3) | 0.6621 (3) | 0.54249 (14) | 0.0454 (5) | |
N1 | 0.6439 (3) | 0.2722 (3) | 0.04252 (15) | 0.0348 (5) | |
N2 | 0.6726 (3) | 0.1487 (3) | −0.00892 (16) | 0.0393 (5) | |
H2 | 0.6280 | 0.1756 | −0.0688 | 0.047* | |
N3 | 0.5944 (3) | 0.5296 (3) | 0.27323 (14) | 0.0312 (5) | |
H3A | 0.6406 | 0.4602 | 0.3283 | 0.037* | |
N4 | 0.3221 (3) | 0.5880 (3) | 0.39480 (15) | 0.0331 (5) | |
H4A | 0.3106 | 0.5185 | 0.3580 | 0.040* | |
C1 | 0.8316 (5) | −0.1514 (4) | −0.0073 (3) | 0.0580 (9) | |
H1A | 0.8567 | −0.1261 | −0.0753 | 0.087* | |
H1B | 0.7407 | −0.1934 | −0.0007 | 0.087* | |
H1C | 0.9310 | −0.2360 | 0.0259 | 0.087* | |
C2 | 0.7805 (4) | 0.0020 (3) | 0.0353 (2) | 0.0388 (6) | |
C3 | 0.8220 (4) | 0.0325 (3) | 0.1198 (2) | 0.0386 (6) | |
H3 | 0.8957 | −0.0464 | 0.1676 | 0.046* | |
C4 | 0.7359 (3) | 0.2003 (3) | 0.12200 (18) | 0.0308 (5) | |
C5 | 0.7426 (4) | 0.2942 (4) | 0.1983 (2) | 0.0439 (7) | |
H5A | 0.8567 | 0.2945 | 0.1991 | 0.053* | |
H5B | 0.7253 | 0.2313 | 0.2607 | 0.053* | |
C6 | 0.6223 (3) | 0.4703 (3) | 0.19184 (17) | 0.0295 (5) | |
C7 | 0.4904 (3) | 0.6970 (3) | 0.28058 (17) | 0.0306 (5) | |
C8 | 0.5246 (4) | 0.8292 (4) | 0.2270 (2) | 0.0403 (6) | |
H8 | 0.6167 | 0.8088 | 0.1844 | 0.048* | |
C9 | 0.4245 (4) | 0.9903 (4) | 0.2358 (2) | 0.0466 (7) | |
H9 | 0.4472 | 1.0810 | 0.1990 | 0.056* | |
C10 | 0.2916 (4) | 1.0194 (4) | 0.2981 (2) | 0.0473 (7) | |
H10 | 0.2222 | 1.1304 | 0.3035 | 0.057* | |
C11 | 0.2587 (4) | 0.8881 (4) | 0.3527 (2) | 0.0414 (6) | |
H11 | 0.1683 | 0.9093 | 0.3964 | 0.050* | |
C12 | 0.3569 (3) | 0.7258 (3) | 0.34409 (18) | 0.0317 (5) | |
C13 | 0.2845 (3) | 0.5649 (3) | 0.48871 (18) | 0.0326 (6) | |
C14 | 0.2482 (3) | 0.4123 (3) | 0.52507 (18) | 0.0332 (6) | |
C15 | 0.1334 (4) | 0.4169 (4) | 0.5994 (2) | 0.0414 (7) | |
H15 | 0.0806 | 0.5160 | 0.6252 | 0.050* | |
C16 | 0.0962 (4) | 0.2784 (4) | 0.6353 (2) | 0.0508 (8) | |
H16 | 0.0173 | 0.2825 | 0.6854 | 0.061* | |
C17 | 0.1736 (4) | 0.1337 (4) | 0.5985 (3) | 0.0534 (8) | |
H17 | 0.1473 | 0.0385 | 0.6229 | 0.064* | |
C18 | 0.2895 (4) | 0.1271 (4) | 0.5261 (2) | 0.0501 (8) | |
H18 | 0.3442 | 0.0266 | 0.5019 | 0.060* | |
C19 | 0.3261 (4) | 0.2659 (4) | 0.4889 (2) | 0.0427 (7) | |
H19 | 0.4048 | 0.2611 | 0.4386 | 0.051* | |
Cl1 | 0.18597 (9) | 0.49021 (9) | 0.17026 (5) | 0.04040 (19) | |
O3 | 0.3013 (4) | 0.3972 (3) | 0.24714 (19) | 0.0717 (8) | |
O4 | 0.2600 (3) | 0.4391 (3) | 0.08272 (17) | 0.0620 (7) | |
O5 | 0.0374 (4) | 0.4586 (4) | 0.1863 (2) | 0.0851 (10) | |
O6 | 0.1550 (3) | 0.6626 (3) | 0.16559 (18) | 0.0596 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0478 (3) | 0.0250 (3) | 0.0209 (3) | −0.0060 (2) | −0.0055 (2) | −0.0057 (2) |
O1 | 0.0507 (11) | 0.0292 (10) | 0.0232 (9) | −0.0084 (9) | −0.0034 (8) | −0.0060 (7) |
O2 | 0.0662 (14) | 0.0425 (12) | 0.0283 (10) | −0.0184 (10) | −0.0031 (9) | −0.0111 (8) |
N1 | 0.0480 (13) | 0.0280 (11) | 0.0256 (11) | −0.0087 (10) | −0.0030 (9) | −0.0087 (9) |
N2 | 0.0564 (15) | 0.0291 (12) | 0.0289 (12) | −0.0089 (11) | −0.0070 (10) | −0.0092 (9) |
N3 | 0.0427 (12) | 0.0303 (11) | 0.0198 (10) | −0.0117 (10) | −0.0036 (8) | −0.0051 (8) |
N4 | 0.0434 (13) | 0.0344 (12) | 0.0246 (11) | −0.0173 (10) | 0.0019 (9) | −0.0074 (9) |
C1 | 0.081 (3) | 0.0332 (17) | 0.054 (2) | −0.0087 (16) | −0.0120 (17) | −0.0168 (14) |
C2 | 0.0506 (17) | 0.0272 (14) | 0.0359 (15) | −0.0106 (13) | 0.0000 (12) | −0.0071 (11) |
C3 | 0.0479 (17) | 0.0264 (14) | 0.0352 (14) | −0.0066 (12) | −0.0067 (12) | −0.0032 (11) |
C4 | 0.0361 (14) | 0.0270 (13) | 0.0256 (12) | −0.0083 (11) | 0.0002 (10) | −0.0032 (10) |
C5 | 0.0532 (18) | 0.0367 (16) | 0.0332 (15) | −0.0029 (14) | −0.0118 (12) | −0.0110 (12) |
C6 | 0.0359 (14) | 0.0306 (13) | 0.0233 (12) | −0.0132 (11) | −0.0021 (10) | −0.0049 (10) |
C7 | 0.0417 (14) | 0.0328 (13) | 0.0209 (12) | −0.0160 (12) | −0.0037 (10) | −0.0073 (10) |
C8 | 0.0558 (18) | 0.0401 (16) | 0.0303 (14) | −0.0235 (14) | 0.0018 (12) | −0.0071 (11) |
C9 | 0.070 (2) | 0.0330 (15) | 0.0412 (16) | −0.0250 (15) | −0.0026 (14) | −0.0038 (12) |
C10 | 0.063 (2) | 0.0284 (15) | 0.0489 (18) | −0.0125 (14) | −0.0039 (14) | −0.0105 (12) |
C11 | 0.0467 (17) | 0.0371 (16) | 0.0394 (16) | −0.0128 (13) | 0.0009 (12) | −0.0103 (12) |
C12 | 0.0410 (14) | 0.0321 (13) | 0.0250 (12) | −0.0157 (12) | −0.0045 (10) | −0.0059 (10) |
C13 | 0.0336 (14) | 0.0356 (14) | 0.0251 (13) | −0.0086 (11) | −0.0033 (10) | −0.0048 (10) |
C14 | 0.0349 (14) | 0.0389 (15) | 0.0246 (13) | −0.0126 (12) | −0.0043 (10) | −0.0029 (10) |
C15 | 0.0366 (15) | 0.0518 (18) | 0.0303 (14) | −0.0113 (14) | −0.0006 (11) | −0.0046 (12) |
C16 | 0.0439 (17) | 0.063 (2) | 0.0400 (17) | −0.0213 (16) | 0.0019 (13) | 0.0063 (15) |
C17 | 0.0522 (19) | 0.052 (2) | 0.055 (2) | −0.0258 (17) | −0.0059 (15) | 0.0094 (15) |
C18 | 0.059 (2) | 0.0389 (17) | 0.0511 (19) | −0.0185 (15) | −0.0025 (15) | −0.0044 (14) |
C19 | 0.0499 (17) | 0.0412 (16) | 0.0358 (15) | −0.0161 (14) | 0.0061 (12) | −0.0071 (12) |
Cl1 | 0.0501 (4) | 0.0418 (4) | 0.0345 (4) | −0.0215 (3) | 0.0020 (3) | −0.0100 (3) |
O3 | 0.112 (2) | 0.0494 (15) | 0.0563 (15) | −0.0322 (15) | −0.0350 (15) | 0.0010 (11) |
O4 | 0.0802 (17) | 0.0741 (17) | 0.0506 (14) | −0.0426 (14) | 0.0204 (12) | −0.0341 (12) |
O5 | 0.0719 (18) | 0.116 (3) | 0.098 (2) | −0.0652 (19) | 0.0271 (16) | −0.0364 (19) |
O6 | 0.0726 (16) | 0.0368 (12) | 0.0646 (15) | −0.0147 (12) | 0.0087 (12) | −0.0122 (11) |
Cu1—N1i | 1.928 (2) | C5—H5B | 0.9900 |
Cu1—N1 | 1.928 (2) | C7—C8 | 1.388 (4) |
Cu1—O1 | 1.9652 (17) | C7—C12 | 1.393 (4) |
Cu1—O1i | 1.9653 (17) | C8—C9 | 1.381 (4) |
Cu1—O4 | 2.505 (3) | C8—H8 | 0.9500 |
O1—C6 | 1.252 (3) | C9—C10 | 1.378 (5) |
O2—C13 | 1.241 (3) | C9—H9 | 0.9500 |
N1—C4 | 1.336 (3) | C10—C11 | 1.382 (4) |
N1—N2 | 1.358 (3) | C10—H10 | 0.9500 |
N2—C2 | 1.345 (4) | C11—C12 | 1.385 (4) |
N2—H2 | 0.9099 | C11—H11 | 0.9500 |
N3—C6 | 1.326 (3) | C13—C14 | 1.488 (4) |
N3—C7 | 1.429 (3) | C14—C19 | 1.388 (4) |
N3—H3A | 0.9099 | C14—C15 | 1.397 (4) |
N4—C13 | 1.349 (3) | C15—C16 | 1.378 (4) |
N4—C12 | 1.418 (3) | C15—H15 | 0.9500 |
N4—H4A | 0.9099 | C16—C17 | 1.379 (5) |
C1—C2 | 1.486 (4) | C16—H16 | 0.9500 |
C1—H1A | 0.9800 | C17—C18 | 1.382 (5) |
C1—H1B | 0.9800 | C17—H17 | 0.9500 |
C1—H1C | 0.9800 | C18—C19 | 1.381 (4) |
C2—C3 | 1.374 (4) | C18—H18 | 0.9500 |
C3—C4 | 1.389 (4) | C19—H19 | 0.9500 |
C3—H3 | 0.9500 | Cl1—O5 | 1.411 (3) |
C4—C5 | 1.495 (4) | Cl1—O6 | 1.429 (2) |
C5—C6 | 1.498 (4) | Cl1—O4 | 1.430 (2) |
C5—H5A | 0.9900 | Cl1—O3 | 1.435 (3) |
N1i—Cu1—N1 | 180.0 | C8—C7—N3 | 120.4 (2) |
N1i—Cu1—O1 | 89.97 (8) | C12—C7—N3 | 119.1 (2) |
N1—Cu1—O1 | 90.03 (8) | C9—C8—C7 | 119.8 (3) |
N1i—Cu1—O1i | 90.03 (8) | C9—C8—H8 | 120.1 |
N1—Cu1—O1i | 89.97 (8) | C7—C8—H8 | 120.1 |
O1—Cu1—O1i | 180.0 | C10—C9—C8 | 120.0 (3) |
C6—O1—Cu1 | 129.02 (17) | C10—C9—H9 | 120.0 |
C4—N1—N2 | 105.5 (2) | C8—C9—H9 | 120.0 |
C4—N1—Cu1 | 130.81 (17) | C9—C10—C11 | 120.4 (3) |
N2—N1—Cu1 | 123.71 (17) | C9—C10—H10 | 119.8 |
C2—N2—N1 | 112.2 (2) | C11—C10—H10 | 119.8 |
C2—N2—H2 | 128.9 | C10—C11—C12 | 120.4 (3) |
N1—N2—H2 | 118.5 | C10—C11—H11 | 119.8 |
C6—N3—C7 | 123.7 (2) | C12—C11—H11 | 119.8 |
C6—N3—H3A | 119.1 | C11—C12—C7 | 119.0 (3) |
C7—N3—H3A | 117.2 | C11—C12—N4 | 122.2 (3) |
C13—N4—C12 | 125.5 (2) | C7—C12—N4 | 118.8 (2) |
C13—N4—H4A | 118.6 | O2—C13—N4 | 123.1 (3) |
C12—N4—H4A | 115.3 | O2—C13—C14 | 121.4 (2) |
C2—C1—H1A | 109.5 | N4—C13—C14 | 115.5 (2) |
C2—C1—H1B | 109.5 | C19—C14—C15 | 119.2 (3) |
H1A—C1—H1B | 109.5 | C19—C14—C13 | 122.4 (3) |
C2—C1—H1C | 109.5 | C15—C14—C13 | 118.4 (3) |
H1A—C1—H1C | 109.5 | C16—C15—C14 | 120.3 (3) |
H1B—C1—H1C | 109.5 | C16—C15—H15 | 119.8 |
N2—C2—C3 | 105.6 (2) | C14—C15—H15 | 119.8 |
N2—C2—C1 | 122.0 (3) | C15—C16—C17 | 120.0 (3) |
C3—C2—C1 | 132.4 (3) | C15—C16—H16 | 120.0 |
C2—C3—C4 | 107.1 (2) | C17—C16—H16 | 120.0 |
C2—C3—H3 | 126.4 | C16—C17—C18 | 120.1 (3) |
C4—C3—H3 | 126.4 | C16—C17—H17 | 120.0 |
N1—C4—C3 | 109.6 (2) | C18—C17—H17 | 120.0 |
N1—C4—C5 | 122.9 (2) | C19—C18—C17 | 120.3 (3) |
C3—C4—C5 | 127.4 (2) | C19—C18—H18 | 119.8 |
C4—C5—C6 | 118.1 (2) | C17—C18—H18 | 119.8 |
C4—C5—H5A | 107.8 | C18—C19—C14 | 120.0 (3) |
C6—C5—H5A | 107.8 | C18—C19—H19 | 120.0 |
C4—C5—H5B | 107.8 | C14—C19—H19 | 120.0 |
C6—C5—H5B | 107.8 | O5—Cl1—O6 | 111.27 (18) |
H5A—C5—H5B | 107.1 | O5—Cl1—O4 | 109.48 (17) |
O1—C6—N3 | 120.3 (2) | O6—Cl1—O4 | 109.57 (15) |
O1—C6—C5 | 124.1 (2) | O5—Cl1—O3 | 109.7 (2) |
N3—C6—C5 | 115.5 (2) | O6—Cl1—O3 | 108.17 (15) |
C8—C7—C12 | 120.4 (2) | O4—Cl1—O3 | 108.60 (18) |
C4—N1—N2—C2 | −0.5 (3) | C8—C9—C10—C11 | 0.7 (5) |
Cu1—N1—N2—C2 | 178.5 (2) | C9—C10—C11—C12 | −1.3 (5) |
N1—N2—C2—C3 | 0.6 (3) | C10—C11—C12—C7 | 0.9 (4) |
N1—N2—C2—C1 | −179.8 (3) | C10—C11—C12—N4 | −176.5 (3) |
N2—C2—C3—C4 | −0.5 (3) | C8—C7—C12—C11 | 0.2 (4) |
C1—C2—C3—C4 | −180.0 (3) | N3—C7—C12—C11 | 178.5 (2) |
N2—N1—C4—C3 | 0.2 (3) | C8—C7—C12—N4 | 177.6 (2) |
Cu1—N1—C4—C3 | −178.8 (2) | N3—C7—C12—N4 | −4.1 (3) |
N2—N1—C4—C5 | 179.0 (3) | C13—N4—C12—C11 | −46.5 (4) |
Cu1—N1—C4—C5 | 0.1 (4) | C13—N4—C12—C7 | 136.2 (3) |
C2—C3—C4—N1 | 0.2 (3) | C12—N4—C13—O2 | −2.4 (4) |
C2—C3—C4—C5 | −178.6 (3) | C12—N4—C13—C14 | 178.4 (2) |
N1—C4—C5—C6 | 9.1 (4) | O2—C13—C14—C19 | −146.2 (3) |
C3—C4—C5—C6 | −172.3 (3) | N4—C13—C14—C19 | 33.1 (4) |
Cu1—O1—C6—N3 | −153.74 (19) | O2—C13—C14—C15 | 32.7 (4) |
Cu1—O1—C6—C5 | 29.7 (4) | N4—C13—C14—C15 | −148.0 (3) |
C7—N3—C6—O1 | −0.1 (4) | C19—C14—C15—C16 | −1.0 (4) |
C7—N3—C6—C5 | 176.8 (2) | C13—C14—C15—C16 | −179.9 (2) |
C4—C5—C6—O1 | −24.4 (4) | C14—C15—C16—C17 | 0.6 (4) |
C4—C5—C6—N3 | 158.8 (3) | C15—C16—C17—C18 | 0.5 (5) |
C6—N3—C7—C8 | −58.0 (3) | C16—C17—C18—C19 | −1.3 (5) |
C6—N3—C7—C12 | 123.7 (3) | C17—C18—C19—C14 | 0.9 (5) |
C12—C7—C8—C9 | −0.8 (4) | C15—C14—C19—C18 | 0.2 (4) |
N3—C7—C8—C9 | −179.1 (2) | C13—C14—C19—C18 | 179.1 (3) |
C7—C8—C9—C10 | 0.4 (4) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2ii | 0.91 | 1.97 | 2.870 (3) | 171 |
N4—H4A···O3 | 0.91 | 2.08 | 2.971 (3) | 166 |
C5—H5A···O5iii | 0.99 | 2.48 | 3.358 (4) | 148 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
Acknowledgements
The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636. CAS Google Scholar
Dholakiya, P. P. & Patel, M. N. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 383–395. CrossRef CAS Google Scholar
El Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069–7070. CrossRef CAS Google Scholar
Emmadi, N. R., Bingi, C., Kotapalli, S. S., Ummanni, R., Nanubolu, J. B. & Atmakur, K. (2015). Bioorg. Med. Chem. Lett. 25, 2918–2922. CrossRef CAS PubMed Google Scholar
Holló, B., Rodić, M. V., Bera, O., Jovičić, M., Leovac, V. M., Tomić, . D. & Mészáros Szécsényi, K. (2013). Struct. Chem. 24, 2193–2201. Google Scholar
Hong, C.-Y., Lee, T.-Y., Lee, T.-J., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 34–37. CrossRef CAS IUCr Journals Google Scholar
Hueso-Ureña, F., Peñas-Chamorro, A. L., Moreno-Carretero, M. N., Amigó, J. M., Esteve, V. & Debaerdemaeker, T. (1999). Polyhedron, 18, 2205–2210. Google Scholar
Jia, M., Seifert, A., Berger, M., Giegengack, H., Schulze, S. & Thiel, W. R. (2004). Chem. Mater. 16, 877–882. CrossRef CAS Google Scholar
Lu, T.-H., Shan, H.-C., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 207–209. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Z., Khan, J., Makowska-Grzyska, M., Zhang, M., Cho, J. H., Suebsuwong, C., Vo, P., Gollapalli, D. R., Kim, Y., Joachimiak, A., Hedstrom, L. & Cuny, G. D. (2014). J. Med. Chem. 57, 10544–10550. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.