metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(N-{2-[2-(3-methyl-1H-pyrazol-5-yl-κN2)acetamido-κO]­phen­yl}benzamide)bis­(per­chlor­ato-κO)copper(II)

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: chkiratekarim@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 12 February 2017; accepted 20 February 2017; online 28 February 2017)

In the centrosymmetric title compound, [Cu(C19H18N4O2)2(ClO4)2], the copper ion sits at the center of an axially elongated octa­hedron with monodentate perchlorate ions weakly coordinated in the axial positions. In the crystal, chains running parallel to (001) are formed by N—H⋯O hydrogen bonds; these chains are linked into sheets parallel to (101) by C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolylacetamide derivatives have been evaluated for their in vitro activity as anti­mycobacterial agents against Mycobacterium smegmatis and also as anti-tuberculosis agents with low cytotoxicity (Emmadi et al., 2015[Emmadi, N. R., Bingi, C., Kotapalli, S. S., Ummanni, R., Nanubolu, J. B. & Atmakur, K. (2015). Bioorg. Med. Chem. Lett. 25, 2918-2922.]). They also have therapeutic properties for the treatment of Cryptosporidium parasites (Sun et al., 2014[Sun, Z., Khan, J., Makowska-Grzyska, M., Zhang, M., Cho, J. H., Suebsuwong, C., Vo, P., Gollapalli, D. R., Kim, Y., Joachimiak, A., Hedstrom, L. & Cuny, G. D. (2014). J. Med. Chem. 57, 10544-10550.]). Their metal complexes have proven anti­microbial activities (Dholakiya et al., 2004[Dholakiya, P. P. & Patel, M. N. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 383-395.]) and may also have applications in catalysis (Jia et al., 2004[Jia, M., Seifert, A., Berger, M., Giegengack, H., Schulze, S. & Thiel, W. R. (2004). Chem. Mater. 16, 877-882.]). Continuing our research in this field (Chkirate et al., 2001[Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635-636.]), we have synthesized a copper perchlorate complex having as a ligand trans-bis-N-{2-[2-(5-methyl-1H-pyrazol-3-yl)acetamido]­phen­yl}benzamide obtained by reacting benzoyl chloride with N-2-amino­phenyl-5-methyl-pyrazol-3-yl acetamide, the latter being obtained by the action of hydrazine on 4-(oxo­propyl­idene)-1,5-benzodiazepin-2-one (El Abbassi et al., 1989[El Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069-7070.]).

The title compound (Fig. 1[link]) has crystallographically imposed inversion symmetry with the organic ligands chelating through the tertiary nitro­gen of the imidazole moiety (N1) and the oxygen (O1) of the proximate carbonyl group. Weak coordination of the perchlorate anions completes an axially elongated octa­hedral environment about the copper. The axial Cu1—O4 distance of 2.505 (3) Å is considerably longer than the equatorial Cu1—O1 distance of 1.9653 (17) Å, which is consistent with the action of the Jahn–Teller effect and is within the range 2.483 (13)–2.621 (6) Å previously cited for copper-bound perchlorate ions (Hueso-Ureña et al., 1999[Hueso-Ureña, F., Peñas-Chamorro, A. L., Moreno-Carretero, M. N., Amigó, J. M., Esteve, V. & Debaerdemaeker, T. (1999). Polyhedron, 18, 2205-2210.]; Hong et al., 1987[Hong, C.-Y., Lee, T.-Y., Lee, T.-J., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 34-37.]; Lu et al., 1987[Lu, T.-H., Shan, H.-C., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 207-209.]; Holló et al., 2013[Holló, B., Rodić, M. V., Bera, O., Jovičić, M., Leovac, V. M., Tomić, . D. & Mészáros Szécsényi, K. (2013). Struct. Chem. 24, 2193-2201.]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids [symmetry code (i): −x + 1, −y + 1, −z + 1]. Intramolecular hydrogen bonds are shown as dashed lines.

In the crystal, pairwise N3—H3A⋯O2i hydrogen bonds form chains of complexes running parallel to the c axis, which are then associated via weak, pairwise C5—H5A⋯O2ii hydrogen bonds, forming layers parallel to (101) (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.91 1.97 2.870 (3) 171
N4—H4A⋯O3 0.91 2.08 2.971 (3) 166
C5—H5A⋯O5ii 0.99 2.48 3.358 (4) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
Packing diagram showing the pairwise N—H⋯O and C—H⋯O hydrogen bonds as, respectively, blue and black dashed lines.

Synthesis and crystallization

0.125 mmol of Cu(ClO4)2·6H2O dissolved in 2.5 ml of ethanol were added to a solution of 5 ml of methanol containing 0.25 mmol of trans-bis-N-{2-[2-(5-methyl-1H-pyrazol-3-yl)acetamido]phen­yl}benzamide. The mixture was heated slightly and then left at room temperature. After filtration, blue–green single crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C19H18N4O2)2(ClO4)2]
Mr 931.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 8.6572 (2), 8.8108 (2), 14.2054 (3)
α, β, γ (°) 79.406 (1), 86.240 (1), 67.895 (1)
V3) 986.78 (4)
Z 1
Radiation type Cu Kα
μ (mm−1) 2.68
Crystal size (mm) 0.24 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.77, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 7804, 3702, 2999
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections 3702
No. of parameters 278
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.51
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

trans-Bis(N-{2-[2-(3-methyl-1H-pyrazol-5-yl-κN2)acetamido-κO]phenyl}benzamide)bis(perchlorato-κO)copper(II) top
Crystal data top
[Cu(C19H18N4O2)2(ClO4)2]Z = 1
Mr = 931.19F(000) = 479
Triclinic, P1Dx = 1.567 Mg m3
a = 8.6572 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.8108 (2) ÅCell parameters from 5387 reflections
c = 14.2054 (3) Åθ = 5.5–71.9°
α = 79.406 (1)°µ = 2.68 mm1
β = 86.240 (1)°T = 298 K
γ = 67.895 (1)°Plate, pale green-blue
V = 986.78 (4) Å30.24 × 0.06 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3702 independent reflections
Radiation source: INCOATEC IµS micro–focus source2999 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 71.9°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.77, Tmax = 0.95l = 1717
7804 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.5402P]
where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.00000.03299 (17)
O10.5561 (2)0.5620 (2)0.11555 (12)0.0359 (4)
O20.2816 (3)0.6621 (3)0.54249 (14)0.0454 (5)
N10.6439 (3)0.2722 (3)0.04252 (15)0.0348 (5)
N20.6726 (3)0.1487 (3)0.00892 (16)0.0393 (5)
H20.62800.17560.06880.047*
N30.5944 (3)0.5296 (3)0.27323 (14)0.0312 (5)
H3A0.64060.46020.32830.037*
N40.3221 (3)0.5880 (3)0.39480 (15)0.0331 (5)
H4A0.31060.51850.35800.040*
C10.8316 (5)0.1514 (4)0.0073 (3)0.0580 (9)
H1A0.85670.12610.07530.087*
H1B0.74070.19340.00070.087*
H1C0.93100.23600.02590.087*
C20.7805 (4)0.0020 (3)0.0353 (2)0.0388 (6)
C30.8220 (4)0.0325 (3)0.1198 (2)0.0386 (6)
H30.89570.04640.16760.046*
C40.7359 (3)0.2003 (3)0.12200 (18)0.0308 (5)
C50.7426 (4)0.2942 (4)0.1983 (2)0.0439 (7)
H5A0.85670.29450.19910.053*
H5B0.72530.23130.26070.053*
C60.6223 (3)0.4703 (3)0.19184 (17)0.0295 (5)
C70.4904 (3)0.6970 (3)0.28058 (17)0.0306 (5)
C80.5246 (4)0.8292 (4)0.2270 (2)0.0403 (6)
H80.61670.80880.18440.048*
C90.4245 (4)0.9903 (4)0.2358 (2)0.0466 (7)
H90.44721.08100.19900.056*
C100.2916 (4)1.0194 (4)0.2981 (2)0.0473 (7)
H100.22221.13040.30350.057*
C110.2587 (4)0.8881 (4)0.3527 (2)0.0414 (6)
H110.16830.90930.39640.050*
C120.3569 (3)0.7258 (3)0.34409 (18)0.0317 (5)
C130.2845 (3)0.5649 (3)0.48871 (18)0.0326 (6)
C140.2482 (3)0.4123 (3)0.52507 (18)0.0332 (6)
C150.1334 (4)0.4169 (4)0.5994 (2)0.0414 (7)
H150.08060.51600.62520.050*
C160.0962 (4)0.2784 (4)0.6353 (2)0.0508 (8)
H160.01730.28250.68540.061*
C170.1736 (4)0.1337 (4)0.5985 (3)0.0534 (8)
H170.14730.03850.62290.064*
C180.2895 (4)0.1271 (4)0.5261 (2)0.0501 (8)
H180.34420.02660.50190.060*
C190.3261 (4)0.2659 (4)0.4889 (2)0.0427 (7)
H190.40480.26110.43860.051*
Cl10.18597 (9)0.49021 (9)0.17026 (5)0.04040 (19)
O30.3013 (4)0.3972 (3)0.24714 (19)0.0717 (8)
O40.2600 (3)0.4391 (3)0.08272 (17)0.0620 (7)
O50.0374 (4)0.4586 (4)0.1863 (2)0.0851 (10)
O60.1550 (3)0.6626 (3)0.16559 (18)0.0596 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0478 (3)0.0250 (3)0.0209 (3)0.0060 (2)0.0055 (2)0.0057 (2)
O10.0507 (11)0.0292 (10)0.0232 (9)0.0084 (9)0.0034 (8)0.0060 (7)
O20.0662 (14)0.0425 (12)0.0283 (10)0.0184 (10)0.0031 (9)0.0111 (8)
N10.0480 (13)0.0280 (11)0.0256 (11)0.0087 (10)0.0030 (9)0.0087 (9)
N20.0564 (15)0.0291 (12)0.0289 (12)0.0089 (11)0.0070 (10)0.0092 (9)
N30.0427 (12)0.0303 (11)0.0198 (10)0.0117 (10)0.0036 (8)0.0051 (8)
N40.0434 (13)0.0344 (12)0.0246 (11)0.0173 (10)0.0019 (9)0.0074 (9)
C10.081 (3)0.0332 (17)0.054 (2)0.0087 (16)0.0120 (17)0.0168 (14)
C20.0506 (17)0.0272 (14)0.0359 (15)0.0106 (13)0.0000 (12)0.0071 (11)
C30.0479 (17)0.0264 (14)0.0352 (14)0.0066 (12)0.0067 (12)0.0032 (11)
C40.0361 (14)0.0270 (13)0.0256 (12)0.0083 (11)0.0002 (10)0.0032 (10)
C50.0532 (18)0.0367 (16)0.0332 (15)0.0029 (14)0.0118 (12)0.0110 (12)
C60.0359 (14)0.0306 (13)0.0233 (12)0.0132 (11)0.0021 (10)0.0049 (10)
C70.0417 (14)0.0328 (13)0.0209 (12)0.0160 (12)0.0037 (10)0.0073 (10)
C80.0558 (18)0.0401 (16)0.0303 (14)0.0235 (14)0.0018 (12)0.0071 (11)
C90.070 (2)0.0330 (15)0.0412 (16)0.0250 (15)0.0026 (14)0.0038 (12)
C100.063 (2)0.0284 (15)0.0489 (18)0.0125 (14)0.0039 (14)0.0105 (12)
C110.0467 (17)0.0371 (16)0.0394 (16)0.0128 (13)0.0009 (12)0.0103 (12)
C120.0410 (14)0.0321 (13)0.0250 (12)0.0157 (12)0.0045 (10)0.0059 (10)
C130.0336 (14)0.0356 (14)0.0251 (13)0.0086 (11)0.0033 (10)0.0048 (10)
C140.0349 (14)0.0389 (15)0.0246 (13)0.0126 (12)0.0043 (10)0.0029 (10)
C150.0366 (15)0.0518 (18)0.0303 (14)0.0113 (14)0.0006 (11)0.0046 (12)
C160.0439 (17)0.063 (2)0.0400 (17)0.0213 (16)0.0019 (13)0.0063 (15)
C170.0522 (19)0.052 (2)0.055 (2)0.0258 (17)0.0059 (15)0.0094 (15)
C180.059 (2)0.0389 (17)0.0511 (19)0.0185 (15)0.0025 (15)0.0044 (14)
C190.0499 (17)0.0412 (16)0.0358 (15)0.0161 (14)0.0061 (12)0.0071 (12)
Cl10.0501 (4)0.0418 (4)0.0345 (4)0.0215 (3)0.0020 (3)0.0100 (3)
O30.112 (2)0.0494 (15)0.0563 (15)0.0322 (15)0.0350 (15)0.0010 (11)
O40.0802 (17)0.0741 (17)0.0506 (14)0.0426 (14)0.0204 (12)0.0341 (12)
O50.0719 (18)0.116 (3)0.098 (2)0.0652 (19)0.0271 (16)0.0364 (19)
O60.0726 (16)0.0368 (12)0.0646 (15)0.0147 (12)0.0087 (12)0.0122 (11)
Geometric parameters (Å, º) top
Cu1—N1i1.928 (2)C5—H5B0.9900
Cu1—N11.928 (2)C7—C81.388 (4)
Cu1—O11.9652 (17)C7—C121.393 (4)
Cu1—O1i1.9653 (17)C8—C91.381 (4)
Cu1—O42.505 (3)C8—H80.9500
O1—C61.252 (3)C9—C101.378 (5)
O2—C131.241 (3)C9—H90.9500
N1—C41.336 (3)C10—C111.382 (4)
N1—N21.358 (3)C10—H100.9500
N2—C21.345 (4)C11—C121.385 (4)
N2—H20.9099C11—H110.9500
N3—C61.326 (3)C13—C141.488 (4)
N3—C71.429 (3)C14—C191.388 (4)
N3—H3A0.9099C14—C151.397 (4)
N4—C131.349 (3)C15—C161.378 (4)
N4—C121.418 (3)C15—H150.9500
N4—H4A0.9099C16—C171.379 (5)
C1—C21.486 (4)C16—H160.9500
C1—H1A0.9800C17—C181.382 (5)
C1—H1B0.9800C17—H170.9500
C1—H1C0.9800C18—C191.381 (4)
C2—C31.374 (4)C18—H180.9500
C3—C41.389 (4)C19—H190.9500
C3—H30.9500Cl1—O51.411 (3)
C4—C51.495 (4)Cl1—O61.429 (2)
C5—C61.498 (4)Cl1—O41.430 (2)
C5—H5A0.9900Cl1—O31.435 (3)
N1i—Cu1—N1180.0C8—C7—N3120.4 (2)
N1i—Cu1—O189.97 (8)C12—C7—N3119.1 (2)
N1—Cu1—O190.03 (8)C9—C8—C7119.8 (3)
N1i—Cu1—O1i90.03 (8)C9—C8—H8120.1
N1—Cu1—O1i89.97 (8)C7—C8—H8120.1
O1—Cu1—O1i180.0C10—C9—C8120.0 (3)
C6—O1—Cu1129.02 (17)C10—C9—H9120.0
C4—N1—N2105.5 (2)C8—C9—H9120.0
C4—N1—Cu1130.81 (17)C9—C10—C11120.4 (3)
N2—N1—Cu1123.71 (17)C9—C10—H10119.8
C2—N2—N1112.2 (2)C11—C10—H10119.8
C2—N2—H2128.9C10—C11—C12120.4 (3)
N1—N2—H2118.5C10—C11—H11119.8
C6—N3—C7123.7 (2)C12—C11—H11119.8
C6—N3—H3A119.1C11—C12—C7119.0 (3)
C7—N3—H3A117.2C11—C12—N4122.2 (3)
C13—N4—C12125.5 (2)C7—C12—N4118.8 (2)
C13—N4—H4A118.6O2—C13—N4123.1 (3)
C12—N4—H4A115.3O2—C13—C14121.4 (2)
C2—C1—H1A109.5N4—C13—C14115.5 (2)
C2—C1—H1B109.5C19—C14—C15119.2 (3)
H1A—C1—H1B109.5C19—C14—C13122.4 (3)
C2—C1—H1C109.5C15—C14—C13118.4 (3)
H1A—C1—H1C109.5C16—C15—C14120.3 (3)
H1B—C1—H1C109.5C16—C15—H15119.8
N2—C2—C3105.6 (2)C14—C15—H15119.8
N2—C2—C1122.0 (3)C15—C16—C17120.0 (3)
C3—C2—C1132.4 (3)C15—C16—H16120.0
C2—C3—C4107.1 (2)C17—C16—H16120.0
C2—C3—H3126.4C16—C17—C18120.1 (3)
C4—C3—H3126.4C16—C17—H17120.0
N1—C4—C3109.6 (2)C18—C17—H17120.0
N1—C4—C5122.9 (2)C19—C18—C17120.3 (3)
C3—C4—C5127.4 (2)C19—C18—H18119.8
C4—C5—C6118.1 (2)C17—C18—H18119.8
C4—C5—H5A107.8C18—C19—C14120.0 (3)
C6—C5—H5A107.8C18—C19—H19120.0
C4—C5—H5B107.8C14—C19—H19120.0
C6—C5—H5B107.8O5—Cl1—O6111.27 (18)
H5A—C5—H5B107.1O5—Cl1—O4109.48 (17)
O1—C6—N3120.3 (2)O6—Cl1—O4109.57 (15)
O1—C6—C5124.1 (2)O5—Cl1—O3109.7 (2)
N3—C6—C5115.5 (2)O6—Cl1—O3108.17 (15)
C8—C7—C12120.4 (2)O4—Cl1—O3108.60 (18)
C4—N1—N2—C20.5 (3)C8—C9—C10—C110.7 (5)
Cu1—N1—N2—C2178.5 (2)C9—C10—C11—C121.3 (5)
N1—N2—C2—C30.6 (3)C10—C11—C12—C70.9 (4)
N1—N2—C2—C1179.8 (3)C10—C11—C12—N4176.5 (3)
N2—C2—C3—C40.5 (3)C8—C7—C12—C110.2 (4)
C1—C2—C3—C4180.0 (3)N3—C7—C12—C11178.5 (2)
N2—N1—C4—C30.2 (3)C8—C7—C12—N4177.6 (2)
Cu1—N1—C4—C3178.8 (2)N3—C7—C12—N44.1 (3)
N2—N1—C4—C5179.0 (3)C13—N4—C12—C1146.5 (4)
Cu1—N1—C4—C50.1 (4)C13—N4—C12—C7136.2 (3)
C2—C3—C4—N10.2 (3)C12—N4—C13—O22.4 (4)
C2—C3—C4—C5178.6 (3)C12—N4—C13—C14178.4 (2)
N1—C4—C5—C69.1 (4)O2—C13—C14—C19146.2 (3)
C3—C4—C5—C6172.3 (3)N4—C13—C14—C1933.1 (4)
Cu1—O1—C6—N3153.74 (19)O2—C13—C14—C1532.7 (4)
Cu1—O1—C6—C529.7 (4)N4—C13—C14—C15148.0 (3)
C7—N3—C6—O10.1 (4)C19—C14—C15—C161.0 (4)
C7—N3—C6—C5176.8 (2)C13—C14—C15—C16179.9 (2)
C4—C5—C6—O124.4 (4)C14—C15—C16—C170.6 (4)
C4—C5—C6—N3158.8 (3)C15—C16—C17—C180.5 (5)
C6—N3—C7—C858.0 (3)C16—C17—C18—C191.3 (5)
C6—N3—C7—C12123.7 (3)C17—C18—C19—C140.9 (5)
C12—C7—C8—C90.8 (4)C15—C14—C19—C180.2 (4)
N3—C7—C8—C9179.1 (2)C13—C14—C19—C18179.1 (3)
C7—C8—C9—C100.4 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2ii0.911.972.870 (3)171
N4—H4A···O30.912.082.971 (3)166
C5—H5A···O5iii0.992.483.358 (4)148
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.  CAS Google Scholar
First citationDholakiya, P. P. & Patel, M. N. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 383–395.  CrossRef CAS Google Scholar
First citationEl Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069–7070.  CrossRef CAS Google Scholar
First citationEmmadi, N. R., Bingi, C., Kotapalli, S. S., Ummanni, R., Nanubolu, J. B. & Atmakur, K. (2015). Bioorg. Med. Chem. Lett. 25, 2918–2922.  CrossRef CAS PubMed Google Scholar
First citationHolló, B., Rodić, M. V., Bera, O., Jovičić, M., Leovac, V. M., Tomić, . D. & Mészáros Szécsényi, K. (2013). Struct. Chem. 24, 2193–2201.  Google Scholar
First citationHong, C.-Y., Lee, T.-Y., Lee, T.-J., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 34–37.  CrossRef CAS IUCr Journals Google Scholar
First citationHueso-Ureña, F., Peñas-Chamorro, A. L., Moreno-Carretero, M. N., Amigó, J. M., Esteve, V. & Debaerdemaeker, T. (1999). Polyhedron, 18, 2205–2210.  Google Scholar
First citationJia, M., Seifert, A., Berger, M., Giegengack, H., Schulze, S. & Thiel, W. R. (2004). Chem. Mater. 16, 877–882.  CrossRef CAS Google Scholar
First citationLu, T.-H., Shan, H.-C., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 207–209.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Z., Khan, J., Makowska-Grzyska, M., Zhang, M., Cho, J. H., Suebsuwong, C., Vo, P., Gollapalli, D. R., Kim, Y., Joachimiak, A., Hedstrom, L. & Cuny, G. D. (2014). J. Med. Chem. 57, 10544–10550.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds