organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(2,3-Di­chloro­phen­yl)-1-phenyl­prop-2-en-1-one

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, khalil.i@najah.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 January 2017; accepted 25 January 2017; online 3 February 2017)

In the title compound, C15H10Cl2O, the dihedral angle between the aromatic rings is 5.59 (15)° and the C—C=C—C torsion angle is 177.5 (3)°. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with R22(10) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of chalcone derivatives (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33-39.]; Kumara et al., 2017[Kumara, K., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x162029.]), we now report herein on the synthesis and crystal structure of the title compound.

The structure of the mol­ecule is shown in Fig. 1[link]. The mol­ecule is nearly planar, with a dihedral angle of 5.59 (15)° between the aromatic rings that are bridged by the enone unit. This value is less than the value of 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The trans conformation about the C7=C8 double bond in the central enone group is confirmed by the C2—C7=C8—C9 torsion angle of 177.5 (3)°. The carbonyl group at atom C9 lies almost in the plane of the olefinic double bond and phenyl ring as indicated by the O1—C9—C10—C11 and O1—C9—C8—C7 torsion angles of 2.9 (5) and 11.1 (5)°, respectively. The double-bond length in the propene unit [C7=C8 = 1.336 (4)°] is significantly longer than the value reported earlier for (2E)-1-(5-chlorothiophen-2-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one (Rodríguez-Lugo et al., 2015[Rodríguez-Lugo, R. E., Urdaneta, N., Pribanic, B. & Landaeta, V. R. (2015). Acta Cryst. C71, 783-787.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers with [R_{2}^{2}](10) ring motifs (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.48 3.360 (4) 159
Symmetry code: (i) -x+1, -y, -z.
[Figure 2]
Figure 2
C—H⋯O hydrogen bonds forming inversion dimers with [R_{2}^{2}](10) ring motifs.

Synthesis and crystallization

A mixture of 2,3-di­chloro­benzaldehyde (0.05 mmol), aceto­phenone (0.05 mmol) and sodium hydroxide (0.05 mmol) in 80% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in the refrigerator for 18 h. The solid formed was filtered, and washed with cold acetic acid (5%). The single crystals were obtained by recrystallization from a solution of the title compound in di­chloro­methane and 3–4 drops of aceto­nitrile (m.p. 391–392 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10Cl2O
Mr 277.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.7594 (19), 11.3610 (16), 8.0912 (11)
β (°) 97.139 (9)
V3) 1255.0 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.51
Crystal size (mm) 0.28 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.365, 0.399
No. of measured, independent and observed [I > 2σ(I)] reflections 6357, 2010, 1748
Rint 0.056
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.193, 1.06
No. of reflections 2010
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.62
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-3-(2,3-Dichlorophenyl)-1-phenylprop-2-en-1-one top
Crystal data top
C15H10Cl2OF(000) = 568
Mr = 277.13Dx = 1.467 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1748 reflections
a = 13.7594 (19) Åθ = 6.5–64.3°
b = 11.3610 (16) ŵ = 4.51 mm1
c = 8.0912 (11) ÅT = 296 K
β = 97.139 (9)°Rectangle, yellow
V = 1255.0 (3) Å30.28 × 0.27 × 0.25 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2010 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1748 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.056
Detector resolution: 18.4 pixels mm-1θmax = 64.3°, θmin = 6.5°
φ and ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.365, Tmax = 0.399l = 99
6357 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1509P)2 + 0.1324P]
where P = (Fo2 + 2Fc2)/3
2010 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.04081 (6)0.24127 (8)0.72918 (10)0.0411 (3)
Cl20.87488 (6)0.09212 (6)0.52852 (9)0.0337 (3)
O10.5691 (2)0.09538 (18)0.1522 (3)0.0397 (8)
C10.8669 (2)0.2440 (3)0.5286 (4)0.0276 (9)
C20.7861 (2)0.3004 (3)0.4371 (4)0.0270 (9)
C30.7826 (2)0.4231 (3)0.4453 (4)0.0289 (9)
C40.8556 (2)0.4871 (3)0.5380 (4)0.0338 (10)
C50.9341 (2)0.4310 (3)0.6275 (4)0.0340 (10)
C60.9394 (2)0.3097 (3)0.6213 (4)0.0309 (10)
C70.7101 (2)0.2341 (3)0.3350 (4)0.0280 (9)
C80.6215 (2)0.2747 (3)0.2755 (4)0.0276 (9)
C90.5519 (2)0.2003 (3)0.1673 (4)0.0276 (9)
C100.4623 (2)0.2540 (2)0.0750 (4)0.0258 (9)
C110.3971 (2)0.1808 (3)0.0221 (4)0.0291 (9)
C120.3129 (2)0.2265 (3)0.1114 (4)0.0336 (10)
C130.2927 (2)0.3456 (3)0.1034 (4)0.0353 (10)
C140.3576 (3)0.4189 (3)0.0083 (4)0.0347 (10)
C150.4414 (2)0.3744 (3)0.0803 (4)0.0313 (9)
H30.730000.462700.387000.0350*
H40.851700.568800.540000.0410*
H50.982700.474100.691000.0410*
H70.724700.156800.309000.0340*
H80.603400.350500.302500.0330*
H110.410100.100700.027100.0350*
H120.270100.177100.176800.0400*
H130.235800.376200.161600.0420*
H140.344400.499100.004100.0420*
H150.484400.424600.143900.0380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0359 (6)0.0413 (6)0.0449 (6)0.0008 (3)0.0001 (4)0.0089 (4)
Cl20.0406 (6)0.0214 (5)0.0391 (5)0.0029 (3)0.0055 (4)0.0040 (3)
O10.0523 (15)0.0163 (13)0.0480 (14)0.0031 (9)0.0036 (11)0.0023 (9)
C10.0343 (17)0.0208 (16)0.0299 (16)0.0018 (12)0.0128 (14)0.0046 (11)
C20.0337 (16)0.0233 (15)0.0257 (15)0.0004 (13)0.0102 (12)0.0003 (12)
C30.0344 (17)0.0210 (15)0.0317 (16)0.0005 (12)0.0054 (13)0.0038 (12)
C40.0436 (18)0.0219 (16)0.0375 (17)0.0045 (13)0.0120 (14)0.0009 (13)
C50.0366 (18)0.0348 (17)0.0323 (16)0.0081 (14)0.0114 (14)0.0011 (14)
C60.0331 (17)0.0298 (17)0.0305 (16)0.0009 (13)0.0068 (13)0.0048 (13)
C70.0400 (19)0.0196 (15)0.0259 (15)0.0003 (12)0.0099 (13)0.0010 (12)
C80.0365 (17)0.0167 (14)0.0304 (16)0.0012 (12)0.0078 (13)0.0003 (12)
C90.0391 (17)0.0156 (16)0.0293 (16)0.0002 (13)0.0087 (13)0.0016 (11)
C100.0314 (17)0.0204 (15)0.0269 (15)0.0004 (12)0.0093 (12)0.0013 (11)
C110.0375 (17)0.0182 (15)0.0338 (16)0.0021 (12)0.0133 (14)0.0024 (12)
C120.0377 (18)0.0292 (18)0.0351 (17)0.0037 (13)0.0091 (14)0.0017 (14)
C130.0346 (17)0.0331 (18)0.0387 (17)0.0024 (14)0.0068 (13)0.0054 (14)
C140.0378 (18)0.0208 (16)0.0460 (19)0.0014 (13)0.0073 (15)0.0009 (14)
C150.0357 (17)0.0194 (15)0.0398 (16)0.0010 (13)0.0083 (14)0.0022 (13)
Geometric parameters (Å, º) top
Cl1—C61.735 (3)C11—C121.388 (4)
Cl2—C11.729 (3)C12—C131.385 (5)
O1—C91.224 (4)C13—C141.383 (5)
C1—C21.411 (4)C14—C151.376 (5)
C1—C61.389 (4)C3—H30.9300
C2—C31.397 (5)C4—H40.9300
C2—C71.459 (4)C5—H50.9300
C3—C41.383 (4)C7—H70.9300
C4—C51.379 (4)C8—H80.9300
C5—C61.381 (5)C11—H110.9300
C7—C81.336 (4)C12—H120.9300
C8—C91.480 (4)C13—H130.9300
C9—C101.490 (4)C14—H140.9300
C10—C111.392 (4)C15—H150.9300
C10—C151.400 (4)
Cl2—C1—C2119.9 (2)C13—C14—C15120.7 (3)
Cl2—C1—C6119.7 (2)C10—C15—C14120.3 (3)
C2—C1—C6120.4 (3)C2—C3—H3119.00
C1—C2—C3117.3 (3)C4—C3—H3119.00
C1—C2—C7121.7 (3)C3—C4—H4120.00
C3—C2—C7121.0 (3)C5—C4—H4120.00
C2—C3—C4121.6 (3)C4—C5—H5121.00
C3—C4—C5120.7 (3)C6—C5—H5121.00
C4—C5—C6118.9 (3)C2—C7—H7117.00
Cl1—C6—C1120.6 (3)C8—C7—H7117.00
Cl1—C6—C5118.1 (2)C7—C8—H8120.00
C1—C6—C5121.2 (3)C9—C8—H8120.00
C2—C7—C8125.7 (3)C10—C11—H11120.00
C7—C8—C9120.7 (3)C12—C11—H11120.00
O1—C9—C8119.8 (3)C11—C12—H12120.00
O1—C9—C10120.4 (3)C13—C12—H12120.00
C8—C9—C10119.8 (3)C12—C13—H13120.00
C9—C10—C11118.2 (2)C14—C13—H13120.00
C9—C10—C15123.0 (3)C13—C14—H14120.00
C11—C10—C15118.7 (3)C15—C14—H14120.00
C10—C11—C12120.5 (3)C10—C15—H15120.00
C11—C12—C13120.1 (3)C14—C15—H15120.00
C12—C13—C14119.7 (3)
Cl2—C1—C2—C3178.5 (2)C2—C7—C8—C9177.5 (3)
Cl2—C1—C2—C72.8 (4)C7—C8—C9—O111.1 (5)
C6—C1—C2—C30.4 (4)C7—C8—C9—C10167.8 (3)
C6—C1—C2—C7178.3 (3)O1—C9—C10—C112.9 (5)
Cl2—C1—C6—Cl13.0 (4)O1—C9—C10—C15176.5 (3)
Cl2—C1—C6—C5178.4 (2)C8—C9—C10—C11178.3 (3)
C2—C1—C6—Cl1178.1 (2)C8—C9—C10—C152.4 (5)
C2—C1—C6—C50.5 (5)C9—C10—C11—C12179.6 (3)
C1—C2—C3—C40.5 (5)C15—C10—C11—C120.2 (5)
C7—C2—C3—C4178.2 (3)C9—C10—C15—C14179.7 (3)
C1—C2—C7—C8163.8 (3)C11—C10—C15—C140.4 (5)
C3—C2—C7—C817.5 (5)C10—C11—C12—C130.5 (5)
C2—C3—C4—C50.8 (5)C11—C12—C13—C141.1 (5)
C3—C4—C5—C60.9 (5)C12—C13—C14—C150.9 (5)
C4—C5—C6—Cl1177.9 (2)C13—C14—C15—C100.2 (5)
C4—C5—C6—C10.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.483.360 (4)159
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumara, K., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x162029.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationRodríguez-Lugo, R. E., Urdaneta, N., Pribanic, B. & Landaeta, V. R. (2015). Acta Cryst. C71, 783–787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds