organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-{[(5-Chloro-2-meth­­oxy­phen­yl)imino]­meth­yl}-4-nitro­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey
*Correspondence e-mail: gonulsevdee@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 January 2017; accepted 1 February 2017; online 14 February 2017)

The title compound, C14H11ClN2O4, is a Schiff base. Its mol­ecule is approximatelly planar, with a maximum deviation of 0.096 (4) Å from planarity for the methyl C atom of the meth­oxy group. The dihedral angle between the 5-chloro-2-meth­oxy­phenyl ring and the phenol ring is 2.40 (10)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many Schiff bases are biologically active, making this class of compounds important for many different disciplines in chemistry. Moreover, some Schiff bases show phototochromism which can be used for radiation intensity measurements, display systems or optical devices (Yıldız et al., 2005[Yıldız, M., Ünver, H., Dülger, B., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2005). J. Mol. Struct. 738, 253-260.]; Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). Apart from these areas, Schiff base are versatile complexing agents, with the products known to show anti­fungal, anti­bacterial, herbicidal, anti­cancer, anti­viral, anti­convulsant, diuretic or cytotoxic properties (Cozzi & Alesi, 2004[Cozzi, P. G. & Alesi, S. (2004). Chem. Commun. pp. 2448-2449.]; Shebl & Khalil, 2015[Shebl, M. & Khalil, S. M. E. (2015). Monatsh. Chem. 146, 15-33.]; Tarafder et al., 2002[Tarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]). As another class of compounds, nitro­aromatics are common components of explosives, dyes and pesticides and have manifold use in organic synthesis as starting materials or inter­mediates (Yan et al., 2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141-148.]; Soojhawon et al., 2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enzyme Microb. Technol. 37, 527-533.]). Aromatic compounds containing multiple nitro substituents are known to resist electrophilic attack by oxgenases (Hallas & Alexander, 1983[Hallas, L. E. & Alexander, M. (1983). Appl. Environ. Microbiol. 45, 1234-1241.]). On the other hand, nitro­aromatics are industrial waste, directly polluting the environment due to their moderate solubility in water, hence poisoning rivers, ponds and soil (Yan et al., 2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141-148.]; Soojhawon et al., 2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enzyme Microb. Technol. 37, 527-533.]). We have synthesized a Schiff base with an aromatic nitro substituent and report herein on its crystal structure.

The title mol­ecule (Fig. 1[link]) is essentially planar, with a maximum deviation of 0.096 (4) Å from planarity for the methyl C atom (C14) of the meth­oxy group. The C7—N2 bond length of 1.270 (3) Å and the C5—O3 bond lengths of 1.328 (3) Å are consistent with a double bond and a single bond, respectively, and are comparable with those of related structures (Kılıç et al., 2009[Kılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o737.]). The entities A (phenol ring; C1–C6/O3), B (nitro group; O1/O2/N1) and C (5-chloro-2-meth­oxy­phenyl ring; C8–C13/O4/ C14/CI1) are inclined by dihedral angles of A/B = 3.1 (3)°, A/C = 2.40 (10)° and (A+B)/C = 2.15 (9)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation whereas inter­molecular (meth­yl)C—H⋯O(meth­oxy) and (imine)C—H⋯O(nitro) hydrogen bonds lead to the formation of sheets extending parallel to (210) (Fig. 2[link], Table 1[link]). A plane-to-plane distance of 3.379 (3) Å for parallel-aligned sheets indicates the presence of ππ stacking inter­actions in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H15⋯N2 0.84 (3) 1.84 (3) 2.606 (3) 151 (3)
C7—H7⋯O1i 0.93 2.42 3.325 (3) 163
C14—H14A⋯O4ii 0.96 2.58 3.516 (4) 166
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A partial packing view along [100]. Dashed lines indicate hydrogen bonds.

Synthesis and crystallization

The title compound was prepared by refluxing a mixture of 2-hy­droxy-5-nitro­benzaldehyde (0.0069 g, 0.413 mmol) in 20 ml ethanol and 3-chloro-4-meth­oxy­aniline (0.0065 g, 0.413 mmol) in 20 ml ethanol for one hour. Crystals suitable for X-ray analysis were obtained by slow evaporation of the resulting solution (yield 35%; m.p 450–452 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H11ClN2O4
Mr 306.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.3727 (9), 4.8669 (4), 22.3233 (13)
β (°) 118.859 (9)
V3) 1367.60 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.71 × 0.30 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 10508, 2679, 1527
Rint 0.048
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 0.94
No. of reflections 2679
No. of parameters 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.18
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

(E)-2-{[(5-Chloro-2-methoxyphenyl)imino]methyl}-4-nitrophenol top
Crystal data top
C14H11ClN2O4F(000) = 632
Mr = 306.70Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3727 (9) ÅCell parameters from 453 reflections
b = 4.8669 (4) Åθ = 2.8–26.5°
c = 22.3233 (13) ŵ = 0.30 mm1
β = 118.859 (9)°T = 293 K
V = 1367.60 (19) Å3Stick, orange
Z = 40.71 × 0.30 × 0.05 mm
Data collection top
Stoe IPDS 2
diffractometer
1527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
rotation method scansh = 1717
10508 measured reflectionsk = 56
2679 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2679 reflectionsΔρmax = 0.13 e Å3
194 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52416 (15)1.7724 (4)0.62967 (10)0.0621 (5)
N20.21754 (15)0.8722 (4)0.46453 (9)0.0548 (5)
O10.55958 (16)1.7922 (4)0.58993 (10)0.0904 (6)
O20.55351 (15)1.9177 (4)0.68000 (9)0.0819 (6)
O30.20231 (15)1.0208 (4)0.57164 (11)0.0773 (6)
O40.06221 (14)0.5188 (4)0.43672 (9)0.0827 (6)
Cl50.24175 (6)0.56490 (18)0.25064 (4)0.0910 (3)
C10.40681 (17)1.4090 (5)0.55759 (11)0.0532 (6)
H10.4374361.4267910.5293950.064*
C20.44190 (17)1.5699 (5)0.61496 (10)0.0516 (5)
C30.39872 (19)1.5455 (5)0.65855 (11)0.0627 (6)
H30.4238281.6536420.6976540.075*
C40.3190 (2)1.3609 (5)0.64320 (12)0.0678 (7)
H40.2897851.3440330.6722150.081*
C50.28050 (19)1.1971 (5)0.58499 (12)0.0572 (6)
C60.32592 (17)1.2200 (5)0.54146 (10)0.0504 (5)
C70.29030 (18)1.0508 (5)0.48111 (11)0.0567 (6)
H70.3217341.0734690.4535010.068*
C80.18388 (18)0.7040 (5)0.40607 (11)0.0532 (5)
C90.22709 (19)0.7136 (5)0.36221 (11)0.0593 (6)
H90.2816180.8365000.3706210.071*
C100.18942 (19)0.5422 (5)0.30648 (12)0.0612 (6)
C110.1098 (2)0.3565 (5)0.29338 (12)0.0676 (7)
H110.0856190.2397880.2558380.081*
C120.0665 (2)0.3450 (5)0.33613 (12)0.0675 (7)
H120.0126890.2192860.3273110.081*
C130.10144 (18)0.5171 (5)0.39218 (12)0.0588 (6)
C140.0258 (3)0.3385 (8)0.42157 (18)0.1160 (13)
H14A0.0465740.3571480.4562700.139*
H14B0.0844450.3860650.3778990.139*
H14C0.0049540.1519620.4204210.139*
H150.190 (3)0.938 (7)0.5353 (18)0.110 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0579 (12)0.0628 (14)0.0635 (12)0.0097 (10)0.0277 (10)0.0060 (11)
N20.0572 (11)0.0488 (12)0.0588 (11)0.0081 (10)0.0282 (9)0.0033 (9)
O10.0925 (14)0.1061 (17)0.0973 (14)0.0438 (12)0.0655 (12)0.0278 (12)
O20.0839 (13)0.0805 (13)0.0724 (11)0.0243 (10)0.0307 (10)0.0242 (11)
O30.0841 (13)0.0825 (15)0.0841 (13)0.0298 (11)0.0555 (11)0.0121 (11)
O40.0831 (12)0.0952 (15)0.0797 (11)0.0399 (11)0.0470 (10)0.0193 (10)
Cl50.1001 (6)0.1078 (6)0.0782 (4)0.0006 (5)0.0534 (4)0.0180 (4)
C10.0551 (13)0.0577 (15)0.0540 (12)0.0050 (12)0.0319 (10)0.0000 (11)
C20.0520 (13)0.0527 (14)0.0506 (12)0.0054 (11)0.0252 (10)0.0012 (11)
C30.0777 (17)0.0616 (17)0.0530 (13)0.0057 (14)0.0349 (12)0.0048 (12)
C40.0865 (18)0.0710 (19)0.0637 (15)0.0118 (15)0.0504 (14)0.0023 (13)
C50.0620 (14)0.0535 (15)0.0636 (14)0.0066 (12)0.0364 (12)0.0032 (12)
C60.0518 (13)0.0535 (15)0.0498 (11)0.0027 (11)0.0276 (10)0.0022 (11)
C70.0593 (14)0.0601 (15)0.0565 (13)0.0062 (13)0.0324 (11)0.0009 (12)
C80.0564 (13)0.0446 (13)0.0543 (12)0.0012 (11)0.0234 (11)0.0014 (11)
C90.0606 (14)0.0536 (15)0.0625 (14)0.0020 (12)0.0288 (12)0.0045 (12)
C100.0642 (15)0.0584 (16)0.0579 (14)0.0083 (13)0.0271 (12)0.0004 (12)
C110.0743 (17)0.0558 (17)0.0550 (14)0.0054 (13)0.0171 (13)0.0070 (12)
C120.0689 (16)0.0529 (16)0.0669 (16)0.0100 (13)0.0218 (13)0.0019 (13)
C130.0575 (14)0.0529 (16)0.0587 (13)0.0042 (12)0.0224 (12)0.0032 (11)
C140.104 (3)0.149 (3)0.113 (2)0.071 (2)0.067 (2)0.038 (2)
Geometric parameters (Å, º) top
N1—O21.218 (2)C4—H40.9300
N1—O11.221 (2)C5—C61.413 (3)
N1—C21.450 (3)C6—C71.445 (3)
N2—C71.270 (3)C7—H70.9300
N2—C81.413 (3)C8—C91.391 (3)
O3—C51.328 (3)C8—C131.405 (3)
O3—H150.84 (3)C9—C101.374 (3)
O4—C131.359 (3)C9—H90.9300
O4—C141.439 (3)C10—C111.374 (4)
Cl5—C101.743 (2)C11—C121.369 (4)
C1—C21.373 (3)C11—H110.9300
C1—C61.387 (3)C12—C131.383 (3)
C1—H10.9300C12—H120.9300
C2—C31.389 (3)C14—H14A0.9600
C3—C41.363 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.391 (3)
O2—N1—O1123.0 (2)C6—C7—H7118.9
O2—N1—C2119.0 (2)C9—C8—C13118.8 (2)
O1—N1—C2118.00 (19)C9—C8—N2124.1 (2)
C7—N2—C8122.17 (18)C13—C8—N2117.09 (19)
C5—O3—H15107 (2)C10—C9—C8120.2 (2)
C13—O4—C14116.9 (2)C10—C9—H9119.9
C2—C1—C6120.34 (19)C8—C9—H9119.9
C2—C1—H1119.8C11—C10—C9121.1 (2)
C6—C1—H1119.8C11—C10—Cl5119.48 (19)
C1—C2—C3121.2 (2)C9—C10—Cl5119.5 (2)
C1—C2—N1119.43 (18)C12—C11—C10119.4 (2)
C3—C2—N1119.4 (2)C12—C11—H11120.3
C4—C3—C2119.1 (2)C10—C11—H11120.3
C4—C3—H3120.5C11—C12—C13121.1 (2)
C2—C3—H3120.5C11—C12—H12119.4
C3—C4—C5121.3 (2)C13—C12—H12119.4
C3—C4—H4119.3O4—C13—C12124.6 (2)
C5—C4—H4119.3O4—C13—C8116.0 (2)
O3—C5—C4119.5 (2)C12—C13—C8119.4 (2)
O3—C5—C6121.2 (2)O4—C14—H14A109.5
C4—C5—C6119.3 (2)O4—C14—H14B109.5
C1—C6—C5118.8 (2)H14A—C14—H14B109.5
C1—C6—C7119.69 (18)O4—C14—H14C109.5
C5—C6—C7121.5 (2)H14A—C14—H14C109.5
N2—C7—C6122.21 (19)H14B—C14—H14C109.5
N2—C7—H7118.9
C6—C1—C2—C30.9 (3)C5—C6—C7—N20.7 (3)
C6—C1—C2—N1178.0 (2)C7—N2—C8—C91.0 (3)
O2—N1—C2—C1178.7 (2)C7—N2—C8—C13178.9 (2)
O1—N1—C2—C10.0 (3)C13—C8—C9—C100.1 (3)
O2—N1—C2—C30.2 (3)N2—C8—C9—C10180.0 (2)
O1—N1—C2—C3178.9 (2)C8—C9—C10—C110.8 (4)
C1—C2—C3—C41.0 (4)C8—C9—C10—Cl5178.00 (18)
N1—C2—C3—C4177.9 (2)C9—C10—C11—C120.9 (4)
C2—C3—C4—C50.1 (4)Cl5—C10—C11—C12177.96 (19)
C3—C4—C5—O3179.6 (2)C10—C11—C12—C130.0 (4)
C3—C4—C5—C60.9 (4)C14—O4—C13—C123.6 (4)
C2—C1—C6—C50.1 (3)C14—O4—C13—C8177.0 (3)
C2—C1—C6—C7179.6 (2)C11—C12—C13—O4179.7 (2)
O3—C5—C6—C1179.5 (2)C11—C12—C13—C81.0 (4)
C4—C5—C6—C11.0 (3)C9—C8—C13—O4179.6 (2)
O3—C5—C6—C70.8 (4)N2—C8—C13—O40.2 (3)
C4—C5—C6—C7178.7 (2)C9—C8—C13—C121.0 (3)
C8—N2—C7—C6179.0 (2)N2—C8—C13—C12179.1 (2)
C1—C6—C7—N2179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H15···N20.84 (3)1.84 (3)2.606 (3)151 (3)
C7—H7···O1i0.932.423.325 (3)163
C14—H14A···O4ii0.962.583.516 (4)166
Symmetry codes: (i) x+1, y+3, z+1; (ii) x, y+1, z+1.
 

References

First citationCozzi, P. G. & Alesi, S. (2004). Chem. Commun. pp. 2448–2449.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHallas, L. E. & Alexander, M. (1983). Appl. Environ. Microbiol. 45, 1234–1241.  CAS PubMed Web of Science Google Scholar
First citationKılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShebl, M. & Khalil, S. M. E. (2015). Monatsh. Chem. 146, 15–33.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enzyme Microb. Technol. 37, 527–533.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148.  Web of Science CrossRef CAS Google Scholar
First citationYıldız, M., Ünver, H., Dülger, B., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2005). J. Mol. Struct. 738, 253–260.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds