inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ba2VO4Br

aUniversität des Saarlandes, Anorganische Festkörperchemie, Campus C4.1, 66123 Saarbrücken, Germany
*Correspondence e-mail: haberkorn@mx.uni-saarland.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 September 2016; accepted 9 February 2017; online 14 February 2017)

Single crystals of dibarium vanadate(V) bromide, Ba2VO4Br, were grown from a melt of Ba3(VO4)2 and BaBr2. Ba2VO4Br crystallizes in the space group Pbcm and is isotypic with the structure of chlorspodiosite, Ca2PO4Cl. Although the ionic radii in chlorspodiosite are different from those in dibarium vanadate bromide, the structures are very similar to one another. The V atom is coordinated by four O atoms, forming a slightly distorted tetra­hedron. The Ba atoms occupy two different sites and are coordinated by six O atoms and three or four Br atoms, depending on the site occupied.

3D view (loading...)
[Scheme 3D1]

Structure description

This work is part of investigations or reinvestigations of compounds with the general formula A2BO4X (A = alkaline earth metal; B = P, As, V or other penta­valent atoms; X = halogen atom). The intention behind the current work is to understand conditions of the stability of the different structure types and to search for new structure types with this general formula.

The title compound Ba2VO4Br crystallizes isotypically with chlorspodiosite, Ca2PO4Cl (Mackay, 1953[Mackay, A. L. (1953). Mineral. Mag. 30, 166-168.]), despite of different ionic radii and the existence of other structure types with the same general formula (Haberkorn et al., 2014[Haberkorn, R., Bauer, J. & Kickelbick, G. (2014). Z. Anorg. Allg. Chem. 640, 3153-3158.]). The crystal structure of Ca2PO4Cl was published by Greenblatt et al. (1967[Greenblatt, M., Banks, E. & Post, B. (1967). Acta Cryst. 23, 166-171.]). For an easier comparison of both structures, the atomic sites were normalized and sorted in the same manner as for the title compound (cf. Refinement section). The normalized atomic positions of Ca2PO4Cl and Ba2VO4Br are given within the Supporting information. The relative distances d/dShannon between the cations and the surrounding anions of both compounds are given in Tables 1[link] and 2[link], respectively. There are also `ideal' distances dShannon provided, calculated from the sum of the corresponding ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) using rCa2+,[8] = 1.12 Å, rBa2+,[8] = 1.42 Å, rP5+,[4] = 0.29 Å, rV5+,[4] = 0.355 Å, rO2−,[3–4] = 1.37 Å, rCl1−,[6] = 1.81 Å, and rBr1−,[6] = 1.96 Å.

Table 1
Selected relative inter­atomic distances in Ca2PO4Cl

Central atom ligand d1/dShannon d2/dShannon d3/dShannon d4/dShannon dShannon (Å)
Ca1 O2− 2× 0.943 2× 1.001 2× 1.016 2× 1.677 2.49
  Cl1− 2× 0.957 2× 1.482 2× 1.602   2.93
Ca2 O2− 2× 0.967 2× 0.973 2× 1.066 2× 1.595 2.49
  Cl1− 1× 0.947 1× 1.023 1× 1.424 1× 1.486 2.93
P O2− 2× 0.923 2× 0.934 2× 2.083   1.66
Values of dShannon were calculated from the sum of the corresponding ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Table 2
Selected relative inter­atomic distances in Ba2VO4Br

Central atom ligand d1/dShannon d2/dShannon d3/dShannon d4/dShannon dShannon (Å)
Ba1 O2− 2× 0.981 2× 0.983 2× 0.993 2× 1.665 2.79
  Br1− 2× 1.048 2× 1.182 2× 1.794   3.38
Ba2 O2− 2× 0.964 2× 0.965 2× 1.022 2× 1.566 2.79
  Br1− 1× 0.986 1× 1.078 1× 1.108 1× 1.578 3.38
V O2− 2× 0.992 2× 0.999 2× 2.165   1.73
Values of dShannon were calculated from the sum of the corresponding ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Four O atoms form in a similar manner marginally distorted tetra­hedra around B for both compounds (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of Ba2VO4Br with VO4 anions displayed as coordination polyhedra.

The cation A occupies two different sites, one at Wyckoff position 4c (site symmetry 2..; Ca1 and Ba1), the other at Wyckoff position 4d (..m; Ca2 and Ba2). For Ca at the 4d sites (Ca2) in Ca2PO4Cl six O atoms form a distorted trigonal prism capped by two Cl atoms. Ca at the 4c site (Ca1) is also coord­inated by two Cl atoms and six O atoms. The eight atoms form an irregular polyhedron. Additional Cl atoms are much more distant and do not belong to the coordination polyhedra of Ca1 and Ca2.

Ba2+ requires more than twice the volume in comparison with Ca2+. Hence, the coordination numbers of the A-sites increase in Ba2VO4Br compared to Ca2PO4Cl. The Ba2 site is ninefold coordinated by six O atoms and three Br atoms, forming a distorted tricapped trigonal prism (Fig. 2[link]). The distortion of the trigonal prism is very similar to that of Ca2 in Ca2PO4Cl. Ba1 has an irregular shaped coordination polyhedron consisting of six O atoms and four Br atoms (Fig. 3[link]). As can be seen in the Voronoi polyhedron, two of these bromine ligands belong to the coordination sphere; nevertheless they are more distant than the other bromine ligands and their Ba—Br distance is 118% of the sum of the ionic radii.

[Figure 2]
Figure 2
The coordination polyhedron of Ba at the 4d site (Ba2) in Ba2VO4Br with inter­atomic distances. Displacement ellipsoids are drawn at the 99.8% probability level. [Symmetry codes: (i) x, y, −z + [{1\over 2}]; (ii) x, y − 1, −z + [{1\over 2}]; (iii) x, y − 1, z; (iv) −x, y − [{1\over 2}], −z + [{1\over 2}]; (v) −x, y − [{1\over 2}], z; (vi) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
(a) The coordination polyhedron of Ba at the 4c site (Ba1) in Ba2VO4Br, (b) displacement ellipsoid plot (99.8% probability level) with inter­atomic distances and (c) Voronoi polyhedron. [Symmetry codes: (i) x, −y + [{1\over 2}], −z; (ii) −x + 1, −y + 1, −z; (iii) −x + 1, y − [{1\over 2}], z; (iv) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, −y + 1, z − [{1\over 2}]; (vi) −x + 1, −y, −z; (vii) −x + 1, y + [{1\over 2}], z.]

The compounds Ca2CrO4Cl (Greenblatt et al., 1967[Greenblatt, M., Banks, E. & Post, B. (1967). Acta Cryst. 23, 166-171.]), Ca2VO4Cl (Banks et al., 1970[Banks, E., Greenblatt, M. & Post, B. (1970). Inorg. Chem. 9, 2259-2264.]), and Ba2VO4Br crystallize in the same space group type Pbcm as Ca2PO4Cl and are isopointal. The similarity of Ca2PO4Cl to these compounds was numerically determined using the program COMPSTRU (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]). The results are given in Table 3[link], where S is the degree of lattice distortion, dmax and dav are the maximum and mean displacements of equivalent atoms and Δ is the measure of similarity taking atomic positions and lattice parameters into account. The structure of Ba2VO4Br is less similar to Ca2PO4Cl than the structures of the other compounds due to a larger difference of the ionic radii. The large volume of the unit cell of Ba2VO4Br (VBa2VO2Br/VCa2PO4Cl = 138%) causes high values of S and Δ. The displacement of the X atom of more than 1 Å enables higher coordination numbers of the A atoms for Ba2VO4Br. The mean displacement dav is less than twice the value for Ca2CrO4Cl and demonstrates rather small displacements of the other sites. Despite different ionic radii and different coordination numbers of the A atoms, the structures of all these compounds are very similar and can be regarded as isotypic (Lima-de-Faria et al., 1990[Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1-11.]).

Table 3
Similarity of Ca2PO4Cl to some isotypic compounds

Compound Ca2CrO4Cl Ca2VO4Cl Ba2VO4Br
S 0.0092 0.0121 0.0561
dmax (Å) 0.3665 0.2445 1.1214
dav (Å) 0.1575 0.1278 0.2607
Δ 0.045 0.030 0.092

Synthesis and crystallization

Ba2VO4Br may be synthesized either via a solid-state reaction (ssr) of Ba3(VO4)2 with BaBr2 or via a melt of Ba3(VO4)2 and an excess of BaBr2. While the ssr supports the preparation of a polycrystalline mass, the melt enables the yield of single crystals. Both methods were used, but the synthesis of single crystals will be focused on here.

Single crystals of Ba2VO4Br were grown from a melt of BaBr2 using as flux and as reacting agent. 0.4 mmol of Ba3(VO4)2, 1.6 mmol BaBr2·2H2O, and 1.6 mmol NH4Br were mixed and filled into a platinum crucible. NH4Br was added to minimize the formation of hydroxides. After an initial step of slowly heating to 523 K allowing water to evaporate, the mixture was heated to 1173 K. This temperature was held for 2 h. Then the melt was allowed to cool down to 1053 K within 10 h, followed by cooling to room temperature with a higher cooling rate. The excess BaBr2 was leached out with distilled water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The atomic coordinates were standardized by the program STRUCTURE TIDY (Gelato & Parthé 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) as implemented in the program PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), though with a different sequence of the sites. The sites were sorted in the same order as the chemical symbols in the chemical formula. For sites with the same atom type these sites were arranged in alphabetical order of their Wyckoff letters. For sites with the same atom type and the same Wyckoff letter the sites were arranged according to increasing x.

Table 4
Experimental details

Crystal data
Chemical formula Ba2VO4Br
Mr 469.52
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 200
a, b, c (Å) 6.8103 (7), 7.8855 (9), 12.0131 (14)
V3) 645.14 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 19.61
Crystal size (mm) 0.04 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.663, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 32756, 2741, 2132
Rint 0.062
(sin θ/λ)max−1) 0.994
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.042, 1.05
No. of reflections 2741
No. of parameters 42
Δρmax, Δρmin (e Å−3) 1.63, −1.14
Computer programs: APEX2, SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg et al., 1999[Brandenburg, K., Berndt, M. & Bergerhoff, G. (1999). DIAMOND. Universität Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Dibarium vanadate(V) bromide top
Crystal data top
Ba2VO4BrDx = 4.834 Mg m3
Mr = 469.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 5232 reflections
a = 6.8103 (7) Åθ = 4.3–40.6°
b = 7.8855 (9) ŵ = 19.61 mm1
c = 12.0131 (14) ÅT = 200 K
V = 645.14 (12) Å3Cuboid, colorless
Z = 40.04 × 0.04 × 0.03 mm
F(000) = 808
Data collection top
Bruker APEXII CCD
diffractometer
2132 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.062
φ and ω scansθmax = 44.9°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.663, Tmax = 0.749k = 1515
32756 measured reflectionsl = 2023
2741 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0146P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.001
wR(F2) = 0.042Δρmax = 1.63 e Å3
S = 1.05Δρmin = 1.14 e Å3
2741 reflectionsExtinction correction: SHELXL2015 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
42 parametersExtinction coefficient: 0.00114 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.61644 (2)0.25000.00000.00879 (3)
Ba20.11189 (2)0.03912 (2)0.25000.00733 (3)
V10.11728 (5)0.25000.00000.00469 (6)
O10.03522 (17)0.77707 (15)0.11312 (11)0.0074 (2)
O20.26812 (17)0.08342 (15)0.03175 (11)0.0085 (2)
Br10.41944 (4)0.41720 (4)0.25000.01897 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00453 (5)0.00797 (5)0.01389 (7)0.0000.0000.00337 (4)
Ba20.01093 (5)0.00591 (5)0.00515 (6)0.00088 (4)0.0000.000
V10.00453 (12)0.00486 (12)0.00467 (15)0.0000.0000.00036 (10)
O10.0071 (4)0.0097 (5)0.0054 (5)0.0011 (3)0.0005 (4)0.0014 (4)
O20.0079 (4)0.0073 (4)0.0104 (6)0.0013 (3)0.0006 (4)0.0012 (4)
Br10.01411 (11)0.02987 (15)0.01293 (13)0.00761 (10)0.0000.000
Geometric parameters (Å, º) top
Ba1—O2i2.7383 (12)Ba2—O1x2.6919 (12)
Ba1—O22.7383 (12)Ba2—O1xi2.6919 (12)
Ba1—O1ii2.7423 (12)Ba2—O22.8510 (14)
Ba1—O1iii2.7423 (12)Ba2—O2xii2.8510 (14)
Ba1—O2iv2.7706 (12)Ba2—Br1vii3.3334 (4)
Ba1—O2v2.7706 (12)Ba2—Br13.6436 (4)
Ba1—Br1vi3.5437 (4)Ba2—Br1viii3.7440 (5)
Ba1—Br13.5437 (4)V1—O21.7107 (12)
Ba1—Br1iii3.9958 (4)V1—O2i1.7107 (12)
Ba1—Br1vii3.9958 (4)V1—O1xiii1.7236 (13)
Ba2—O1viii2.6885 (13)V1—O1ix1.7236 (13)
Ba2—O1ix2.6885 (13)
O2i—Ba1—O259.94 (5)Br1iii—Ba1—Br1vii172.988 (9)
O2i—Ba1—O1ii141.36 (4)O1viii—Ba2—O1ix75.41 (5)
O2—Ba1—O1ii135.87 (4)O1viii—Ba2—O1x146.830 (14)
O2i—Ba1—O1iii135.87 (4)O1ix—Ba2—O1x95.16 (4)
O2—Ba1—O1iii141.36 (4)O1viii—Ba2—O1xi95.16 (4)
O1ii—Ba1—O1iii60.21 (5)O1ix—Ba2—O1xi146.830 (14)
O2i—Ba1—O2iv79.03 (4)O1x—Ba2—O1xi75.30 (6)
O2—Ba1—O2iv132.99 (4)O1viii—Ba2—O2128.03 (4)
O1ii—Ba1—O2iv67.20 (4)O1ix—Ba2—O259.41 (3)
O1iii—Ba1—O2iv84.07 (4)O1x—Ba2—O266.72 (4)
O2i—Ba1—O2v132.99 (4)O1xi—Ba2—O2136.73 (4)
O2—Ba1—O2v79.03 (4)O1viii—Ba2—O2xii59.41 (3)
O1ii—Ba1—O2v84.07 (4)O1ix—Ba2—O2xii128.03 (4)
O1iii—Ba1—O2v67.20 (4)O1x—Ba2—O2xii136.73 (4)
O2iv—Ba1—O2v147.03 (5)O1xi—Ba2—O2xii66.72 (4)
O2i—Ba1—Br1vi74.48 (3)O2—Ba2—O2xii133.74 (5)
O2—Ba1—Br1vi67.15 (3)O1viii—Ba2—Br1vii123.92 (3)
O1ii—Ba1—Br1vi140.94 (3)O1ix—Ba2—Br1vii123.92 (3)
O1iii—Ba1—Br1vi83.03 (3)O1x—Ba2—Br1vii87.96 (3)
O2iv—Ba1—Br1vi125.25 (3)O1xi—Ba2—Br1vii87.96 (3)
O2v—Ba1—Br1vi68.76 (3)O2—Ba2—Br1vii71.22 (2)
O2i—Ba1—Br167.15 (3)O2xii—Ba2—Br1vii71.21 (2)
O2—Ba1—Br174.48 (3)O1viii—Ba2—Br169.09 (3)
O1ii—Ba1—Br183.03 (3)O1ix—Ba2—Br169.09 (3)
O1iii—Ba1—Br1140.94 (3)O1x—Ba2—Br1137.70 (3)
O2iv—Ba1—Br168.76 (3)O1xi—Ba2—Br1137.70 (3)
O2v—Ba1—Br1125.25 (3)O2—Ba2—Br171.65 (2)
Br1vi—Ba1—Br1135.507 (11)O2xii—Ba2—Br171.65 (2)
O2i—Ba1—Br1iii61.79 (3)Br1vii—Ba2—Br171.673 (8)
O2—Ba1—Br1iii111.52 (3)O1viii—Ba2—Br1viii79.58 (3)
O1ii—Ba1—Br1iii111.98 (3)O1ix—Ba2—Br1viii79.58 (3)
O1iii—Ba1—Br1iii74.43 (3)O1x—Ba2—Br1viii67.38 (3)
O2iv—Ba1—Br1iii59.84 (3)O1xi—Ba2—Br1viii67.38 (3)
O2v—Ba1—Br1iii122.49 (3)O2—Ba2—Br1viii113.09 (3)
Br1vi—Ba1—Br1iii65.431 (8)O2xii—Ba2—Br1viii113.09 (2)
Br1—Ba1—Br1iii111.683 (8)Br1vii—Ba2—Br1viii148.359 (12)
O2i—Ba1—Br1vii111.52 (3)Br1—Ba2—Br1viii139.968 (10)
O2—Ba1—Br1vii61.79 (3)O2—V1—O2i106.18 (8)
O1ii—Ba1—Br1vii74.43 (3)O2—V1—O1xiii116.27 (6)
O1iii—Ba1—Br1vii111.98 (3)O2i—V1—O1xiii106.33 (6)
O2iv—Ba1—Br1vii122.49 (3)O2—V1—O1ix106.33 (6)
O2v—Ba1—Br1vii59.84 (3)O2i—V1—O1ix116.27 (6)
Br1vi—Ba1—Br1vii111.683 (8)O1xiii—V1—O1ix105.90 (8)
Br1—Ba1—Br1vii65.431 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z; (v) x+1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y1/2, z+1/2; (viii) x, y1/2, z+1/2; (ix) x, y1/2, z; (x) x, y1, z; (xi) x, y1, z+1/2; (xii) x, y, z+1/2; (xiii) x, y+1, z.
Selected relative interatomic distances (Å) in Ca2PO4Cl top
Central AtomLigandd1/dShannond2/dShannond3/dShannond4/dShannondShannon
Ca1O2-2× 0.9432× 1.0012× 1.0162× 1.6772.49
Cl1-2× 0.9572× 1.4822× 1.6022.93
Ca2O2-2× 0.9672× 0.9732× 1.0662× 1.5952.49
Cl1-1× 0.9471× 1.0231× 1.4241× 1.4862.93
PO2-2× 0.9232× 0.9342× 2.0831.66
Values of dShannon were calculated from the sum of the corresponding ionic radii (Shannon, 1976).
Selected relative interatomic distances (Å) in Ba2VO4Br top
Central atomligandd1/dShannond2/dShannond3/dShannond4/dShannondShannon
Ba1O2-2× 0.9812× 0.9832× 0.9932× 1.6652.79
Br1-2× 1.0482× 1.1822× 1.7943.38
Ba2O2-2× 0.9642× 0.9652× 1.0222× 1.5662.79
Br1-1× 0.9861× 1.0781× 1.1081× 1.5783.38
VO2-2× 0.9922× 0.9992× 2.1651.725
Values of dShannon were calculated from the sum of the corresponding ionic radii (Shannon, 1976).
Similarity of Ca2PO4Cl to some isotypic compounds (Å) top
CompoundCa2CrO4ClCa2VO4ClBa2VO4Br
S0.00920.01210.0561
dmax0.36650.24451.1214
dav0.15750.12780.2607
Δ0.0450.0300.092
Standardized atomic positions of Ca2PO4Cl top
SiteatomWyckoff positionxyzSOF
Ca1Ca2+4c0.6336 (1)0.2501
Ca2Ca2+4d0.1286 (2)0.0280 (1)0.251
P1P5+4c0.1381 (2)0.2501
O1O2-8e0.0105 (4)0.7723 (3)0.1145 (1)1
O2O2-8e0.2840 (4)0.0764 (3)0.0233 (2)1
Cl1Cl1-4d0.5185 (2)0.2827 (3)0.251
Original data taken from literature (Greenblatt et al. 1967).
 

References

First citationBanks, E., Greenblatt, M. & Post, B. (1970). Inorg. Chem. 9, 2259–2264.  CrossRef CAS Google Scholar
First citationBrandenburg, K., Berndt, M. & Bergerhoff, G. (1999). DIAMOND. Universität Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGreenblatt, M., Banks, E. & Post, B. (1967). Acta Cryst. 23, 166–171.  CrossRef IUCr Journals Google Scholar
First citationHaberkorn, R., Bauer, J. & Kickelbick, G. (2014). Z. Anorg. Allg. Chem. 640, 3153–3158.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11.  CrossRef CAS IUCr Journals Google Scholar
First citationMackay, A. L. (1953). Mineral. Mag. 30, 166–168.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds