organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­amino-4H-1,2,4-triazol-1-ium 4-nitro­benzoate dihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat , Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 29 January 2017; accepted 30 January 2017; online 3 February 2017)

The crystal of the title salt hydrate, C2H6N5+·C7H4NO4·2H2O, is built up from a 3,5-di­amino-4H-1,2,4-triazol-1-ium cation linked to a 4-nitro­benzoate anion and to two water mol­ecules through strong hydrogen bonds. The triazolyl ring is virtually planar, with the maximum deviation from the mean plane being 0.003 (1) Å. Small twists are noted in the anion with the dihedral angles between the ring and carboxyl­ate and nitro groups being 7.82 (13) and 9.10 (15)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O inter­actions, forming layers parallel to (-101). The sheets are linked by O—H⋯O hydrogen bonds and ππ inter­actions between triazole and benzene rings [inter-centroid separation = 3.4967 (8) Å] to form a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Guanazole (3,5-di­amino-1,2,4-triazole) derivatives, attract an inter­est and are actively studied as ligands in the synthesis of d-metal complexes (Aznar et al., 2006[Aznar, E., Ferrer, S., Borrás, J., Lloret, F., Liu-González, M., Rodríguez-Prieto, H. & García-Granda, S. (2006). Eur. J. Inorg. Chem. pp. 5115-5125.]), precursors of condensed N-heterocyclic systems (Fernandes et al., 2015[Fernandes, J. A., Liu, B., Tomé, J. P. C., Cunha-Silva, L. & Almeida Paz, F. A. (2015). Acta Cryst. E71, 840-843.]), corrosion inhibitors (El Issami et al., 2007[El Issami, S., Bazzi, L., Mihit, M., Hammouti, B., Kertit, S., Ait Addi, E. & Salghi, R. (2007). Pigm. Resin Technol. pp. 161-168.]; Kuznetsov & Kaza­nsky, 2008[Kuznetsov, Yu. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219-232.]), biologically active compounds with a wide range efficiency (Chohan et al., 2010[Chohan, Z. H., Sumrra, S. H., Youssoufi, M. H. T. B. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 2739-2747.]) and as high-energy compounds (Kofman, 2002[Kofman, T. P. (2002). Russ. J. Org. Chem. 38, 1231-1243.]). The present work report the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
Plot of the constituents of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The asymmetric unit comprises a 3,5-di­amino-4H-1,2,4-triazol-1-ium cation, a 4-nitro­benzoate anion and two water mol­ecules The maximum deviation from the mean plane of the triazolyl ring is 0.003 (1) Å. Small twists are noted in the anion with the dihedral angles between the ring and carboxyl­ate and nitro groups being 7.82 (13) and 9.10 (15)°, respectively. A similar structure has been reported previously (Ren et al., 2013[Ren, Y.-H., Li, W., Zhao, F.-Q., Yi, J.-H., Yan, B., Ma, H.-X., Xu, K.-Z., Song, J.-R. & Hu, R.-Z. (2013). J. Anal. Appl. Pyrolysis, 102, 89-96.]) isolated from the reaction of 3,5-di­nitro­benzoic acid and 3,5-di­amino-1,2,4-triazole.

In the crystal, the cations and anions are inter­connected and are connected to the water mol­ecules by N—H⋯O, N—H⋯N and O—H⋯O strong hydrogen bonds to form sheets parallel to ([\overline{1}]01); C—H⋯O inter­actions are also noted. In addition, the layers are linked by O—H⋯O hydrogen bonds and ππ inter­actions between triazolyl and benzoate rings [inter-centroid distance = 3.4967 (8) Å], forming a three-dimensional network as shown in Fig. 2[link] and Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.97 1.76 2.7221 (14) 176
N3—H3N⋯O5 0.94 1.86 2.8021 (16) 176
N5—H5B⋯O4 0.87 1.93 2.7871 (17) 170
N6—H6A⋯O6 0.85 2.34 3.1866 (19) 174
N6—H6B⋯O5i 0.85 2.29 3.1318 (17) 170
N5—H5A⋯N4ii 0.90 2.06 2.9224 (17) 159
O5—H5AO⋯O6iii 0.88 1.95 2.8156 (18) 166
O5—H5BO⋯O4i 0.87 1.92 2.7868 (16) 176
O6—H6AO⋯O3 0.92 1.87 2.7363 (15) 157
O6—H6BO⋯O4iv 0.92 2.24 3.0419 (19) 146
C6—H6⋯O2v 0.93 2.45 3.333 (2) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial crystal packing for the title compound, showing mol­ecules linked by N—H⋯O and O—H⋯O hydrogen bonds and by ππ inter­actions, forming a three-dimensional network.

Synthesis and crystallization

A mixture of 3,5-di­amino-1,2,4 triazole (0.50 g; 5 mmol), 4-nitro­benzoyl chloride (0.92 g; 5 mmol) in ethanol-water solution (30 ml) was heated at reflux for 12 h. The completion of the reaction was confirmed by TLC. The solvent was removed by evaporation and the residue was recrystallized from ethanol solution to afford the title salt as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C2H6N5+·C7H4NO4·2H2O
Mr 302.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.2050 (2), 19.8831 (6), 9.7676 (3)
β (°) 105.691 (1)
V3) 1347.14 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.37 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.645, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24987, 3487, 2811
Rint 0.028
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.05
No. of reflections 3487
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

3,5-Diamino-4H-1,2,4-triazol-1-ium 4-nitrobenzoate dihydrate top
Crystal data top
C2H6N5+·C7H4NO4·2H2OF(000) = 632
Mr = 302.26Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2050 (2) ÅCell parameters from 3487 reflections
b = 19.8831 (6) Åθ = 2.4–28.7°
c = 9.7676 (3) ŵ = 0.13 mm1
β = 105.691 (1)°T = 296 K
V = 1347.14 (7) Å3Block, colourless
Z = 40.37 × 0.32 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.645, Tmax = 0.746k = 2626
24987 measured reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.068P)2 + 0.370P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3487 reflectionsΔρmax = 0.34 e Å3
190 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5653 (2)0.65186 (7)0.88659 (15)0.0402 (3)
C20.6168 (2)0.58783 (7)0.93513 (15)0.0436 (3)
H20.69690.58041.02590.052*
C30.5457 (2)0.53473 (7)0.84470 (14)0.0395 (3)
H30.57830.49090.87520.047*
C40.42631 (18)0.54581 (6)0.70904 (13)0.0313 (3)
C50.3781 (2)0.61125 (6)0.66323 (15)0.0378 (3)
H50.29870.61900.57230.045*
C60.4482 (2)0.66517 (7)0.75320 (17)0.0424 (3)
H60.41660.70920.72370.051*
C70.34457 (19)0.48612 (6)0.61666 (14)0.0349 (3)
C80.1939 (2)0.32045 (6)0.39199 (14)0.0370 (3)
C90.02010 (18)0.37170 (7)0.20317 (14)0.0350 (3)
N10.6422 (2)0.70814 (7)0.98345 (16)0.0554 (4)
N20.12815 (16)0.38183 (5)0.34091 (12)0.0352 (2)
H2N0.16300.42320.39350.042*
N30.12583 (18)0.27665 (6)0.28955 (13)0.0419 (3)
H3N0.14700.23000.29800.050*
N40.01422 (18)0.30828 (6)0.16723 (13)0.0415 (3)
N50.3061 (2)0.30868 (6)0.52092 (14)0.0546 (4)
H5A0.35030.26720.54760.066*
H5B0.33710.34340.57630.066*
N60.0649 (2)0.42254 (7)0.11816 (14)0.0478 (3)
H6A0.05070.46200.15330.057*
H6B0.13620.41000.03850.057*
O10.6188 (2)0.76516 (6)0.93599 (18)0.0773 (4)
O20.7257 (3)0.69499 (8)1.10651 (16)0.0888 (5)
O30.24541 (16)0.49644 (5)0.49201 (11)0.0478 (3)
O40.37626 (18)0.42890 (5)0.67293 (12)0.0518 (3)
O50.20562 (17)0.13888 (5)0.32618 (12)0.0516 (3)
H5AO0.30030.12300.29430.077*
H5BO0.10410.11620.28220.077*
O60.01665 (19)0.56608 (6)0.26751 (13)0.0589 (3)
H6AO0.08860.55290.35620.088*
H6BO0.09270.58650.27800.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (7)0.0333 (6)0.0431 (7)0.0053 (5)0.0115 (6)0.0109 (5)
C20.0512 (8)0.0400 (7)0.0337 (7)0.0024 (6)0.0014 (6)0.0045 (5)
C30.0489 (8)0.0293 (6)0.0352 (6)0.0010 (5)0.0025 (6)0.0009 (5)
C40.0340 (6)0.0265 (5)0.0316 (6)0.0020 (4)0.0059 (5)0.0007 (4)
C50.0413 (7)0.0289 (6)0.0384 (7)0.0011 (5)0.0028 (5)0.0032 (5)
C60.0482 (8)0.0251 (6)0.0516 (8)0.0019 (5)0.0098 (6)0.0001 (5)
C70.0377 (6)0.0275 (6)0.0352 (6)0.0012 (5)0.0024 (5)0.0006 (5)
C80.0405 (7)0.0269 (6)0.0384 (7)0.0021 (5)0.0017 (5)0.0006 (5)
C90.0320 (6)0.0342 (6)0.0352 (6)0.0006 (5)0.0026 (5)0.0027 (5)
N10.0634 (9)0.0411 (7)0.0603 (9)0.0095 (6)0.0143 (7)0.0194 (6)
N20.0386 (6)0.0265 (5)0.0345 (6)0.0001 (4)0.0004 (4)0.0021 (4)
N30.0489 (7)0.0265 (5)0.0426 (6)0.0020 (5)0.0006 (5)0.0032 (4)
N40.0441 (6)0.0338 (6)0.0387 (6)0.0017 (5)0.0021 (5)0.0041 (5)
N50.0730 (9)0.0319 (6)0.0425 (7)0.0040 (6)0.0126 (6)0.0009 (5)
N60.0533 (7)0.0404 (6)0.0399 (6)0.0080 (5)0.0045 (5)0.0004 (5)
O10.0944 (11)0.0375 (6)0.0920 (10)0.0042 (6)0.0115 (8)0.0217 (7)
O20.1303 (14)0.0664 (9)0.0536 (8)0.0222 (9)0.0027 (8)0.0234 (7)
O30.0591 (6)0.0337 (5)0.0373 (5)0.0006 (4)0.0096 (5)0.0014 (4)
O40.0699 (7)0.0267 (5)0.0455 (6)0.0028 (4)0.0074 (5)0.0024 (4)
O50.0571 (7)0.0361 (5)0.0538 (6)0.0023 (5)0.0018 (5)0.0070 (4)
O60.0613 (7)0.0595 (7)0.0495 (6)0.0077 (6)0.0041 (5)0.0136 (5)
Geometric parameters (Å, º) top
C1—C61.373 (2)C9—N41.3065 (17)
C1—C21.374 (2)C9—N61.3459 (18)
C1—N11.4734 (18)C9—N21.3748 (16)
C2—C31.3831 (19)N1—O11.219 (2)
C2—H20.9300N1—O21.218 (2)
C3—C41.3884 (18)N2—H2N0.9671
C3—H30.9300N3—N41.3964 (17)
C4—C51.3891 (17)N3—H3N0.9397
C4—C71.5107 (17)N5—H5A0.8975
C5—C61.3918 (19)N5—H5B0.8689
C5—H50.9300N6—H6A0.8520
C6—H60.9300N6—H6B0.8459
C7—O31.2508 (16)O5—H5AO0.8816
C7—O41.2573 (16)O5—H5BO0.8682
C8—N31.3170 (17)O6—H6AO0.9193
C8—N51.3203 (18)O6—H6BO0.9165
C8—N21.3548 (16)
C6—C1—C2123.04 (13)N5—C8—N2125.02 (12)
C6—C1—N1119.40 (13)N4—C9—N6125.65 (12)
C2—C1—N1117.56 (13)N4—C9—N2111.90 (12)
C1—C2—C3117.91 (13)N6—C9—N2122.44 (12)
C1—C2—H2121.0O1—N1—O2123.74 (15)
C3—C2—H2121.0O1—N1—C1118.22 (15)
C2—C3—C4121.01 (13)O2—N1—C1118.04 (14)
C2—C3—H3119.5C8—N2—C9106.10 (10)
C4—C3—H3119.5C8—N2—H2N123.8
C3—C4—C5119.51 (11)C9—N2—H2N129.9
C3—C4—C7119.09 (11)C8—N3—N4111.24 (11)
C5—C4—C7121.35 (11)C8—N3—H3N124.5
C4—C5—C6120.10 (12)N4—N3—H3N124.2
C4—C5—H5119.9C9—N4—N3103.62 (11)
C6—C5—H5119.9C8—N5—H5A121.2
C1—C6—C5118.42 (12)C8—N5—H5B116.2
C1—C6—H6120.8H5A—N5—H5B122.6
C5—C6—H6120.8C9—N6—H6A117.3
O3—C7—O4124.21 (12)C9—N6—H6B114.1
O3—C7—C4118.71 (11)H6A—N6—H6B128.3
O4—C7—C4117.03 (11)H5AO—O5—H5BO105.6
N3—C8—N5127.85 (13)H6AO—O6—H6BO107.7
N3—C8—N2107.13 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.971.762.7221 (14)176
N3—H3N···O50.941.862.8021 (16)176
N5—H5B···O40.871.932.7871 (17)170
N6—H6A···O60.852.343.1866 (19)174
N6—H6B···O5i0.852.293.1318 (17)170
N5—H5A···N4ii0.902.062.9224 (17)159
O5—H5AO···O6iii0.881.952.8156 (18)166
O5—H5BO···O4i0.871.922.7868 (16)176
O6—H6AO···O30.921.872.7363 (15)157
O6—H6BO···O4iv0.922.243.0419 (19)146
C6—H6···O2v0.932.453.333 (2)160
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the Mohammed V University in Rabat, for financial support.

References

First citationAznar, E., Ferrer, S., Borrás, J., Lloret, F., Liu-González, M., Rodríguez-Prieto, H. & García-Granda, S. (2006). Eur. J. Inorg. Chem. pp. 5115–5125.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Sumrra, S. H., Youssoufi, M. H. T. B. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 2739–2747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl Issami, S., Bazzi, L., Mihit, M., Hammouti, B., Kertit, S., Ait Addi, E. & Salghi, R. (2007). Pigm. Resin Technol. pp. 161–168.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, J. A., Liu, B., Tomé, J. P. C., Cunha-Silva, L. & Almeida Paz, F. A. (2015). Acta Cryst. E71, 840–843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKofman, T. P. (2002). Russ. J. Org. Chem. 38, 1231–1243.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuznetsov, Yu. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219–232.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRen, Y.-H., Li, W., Zhao, F.-Q., Yi, J.-H., Yan, B., Ma, H.-X., Xu, K.-Z., Song, J.-R. & Hu, R.-Z. (2013). J. Anal. Appl. Pyrolysis, 102, 89–96.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds