organic compounds
3,5-Diamino-4H-1,2,4-triazol-1-ium 4-nitrobenzoate dihydrate
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat , Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr
The crystal of the title salt hydrate, C2H6N5+·C7H4NO4−·2H2O, is built up from a 3,5-diamino-4H-1,2,4-triazol-1-ium cation linked to a 4-nitrobenzoate anion and to two water molecules through strong hydrogen bonds. The triazolyl ring is virtually planar, with the maximum deviation from the mean plane being 0.003 (1) Å. Small twists are noted in the anion with the dihedral angles between the ring and carboxylate and nitro groups being 7.82 (13) and 9.10 (15)°, respectively. In the crystal, molecules are linked by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O interactions, forming layers parallel to (-101). The sheets are linked by O—H⋯O hydrogen bonds and π–π interactions between triazole and benzene rings [inter-centroid separation = 3.4967 (8) Å] to form a three-dimensional structure.
Keywords: crystal structure; salt; hydrate; benzoate; triazole; hydrogen bonding.
CCDC reference: 1530351
Structure description
Guanazole (3,5-diamino-1,2,4-triazole) derivatives, attract an interest and are actively studied as ligands in the synthesis of d-metal complexes (Aznar et al., 2006), precursors of condensed N-heterocyclic systems (Fernandes et al., 2015), corrosion inhibitors (El Issami et al., 2007; Kuznetsov & Kazansky, 2008), biologically active compounds with a wide range efficiency (Chohan et al., 2010) and as high-energy compounds (Kofman, 2002). The present work report the synthesis and of the title compound (Fig. 1).
The H-1,2,4-triazol-1-ium cation, a 4-nitrobenzoate anion and two water molecules The maximum deviation from the mean plane of the triazolyl ring is 0.003 (1) Å. Small twists are noted in the anion with the dihedral angles between the ring and carboxylate and nitro groups being 7.82 (13) and 9.10 (15)°, respectively. A similar structure has been reported previously (Ren et al., 2013) isolated from the reaction of 3,5-dinitrobenzoic acid and 3,5-diamino-1,2,4-triazole.
comprises a 3,5-diamino-4In the crystal, the cations and anions are interconnected and are connected to the water molecules by N—H⋯O, N—H⋯N and O—H⋯O strong hydrogen bonds to form sheets parallel to (01); C—H⋯O interactions are also noted. In addition, the layers are linked by O—H⋯O hydrogen bonds and π–π interactions between triazolyl and benzoate rings [inter-centroid distance = 3.4967 (8) Å], forming a three-dimensional network as shown in Fig. 2 and Table 1.
Synthesis and crystallization
A mixture of 3,5-diamino-1,2,4 triazole (0.50 g; 5 mmol), 4-nitrobenzoyl chloride (0.92 g; 5 mmol) in ethanol-water solution (30 ml) was heated at reflux for 12 h. The completion of the reaction was confirmed by TLC. The solvent was removed by evaporation and the residue was recrystallized from ethanol solution to afford the title salt as colourless crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1530351
https://doi.org/10.1107/S2414314617001596/tk4030sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617001596/tk4030Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617001596/tk4030Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C2H6N5+·C7H4NO4−·2H2O | F(000) = 632 |
Mr = 302.26 | Dx = 1.490 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2050 (2) Å | Cell parameters from 3487 reflections |
b = 19.8831 (6) Å | θ = 2.4–28.7° |
c = 9.7676 (3) Å | µ = 0.13 mm−1 |
β = 105.691 (1)° | T = 296 K |
V = 1347.14 (7) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.32 × 0.27 mm |
Bruker X8 APEX diffractometer | 3487 independent reflections |
Radiation source: fine-focus sealed tube | 2811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 28.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.645, Tmax = 0.746 | k = −26→26 |
24987 measured reflections | l = −13→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.068P)2 + 0.370P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3487 reflections | Δρmax = 0.34 e Å−3 |
190 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5653 (2) | 0.65186 (7) | 0.88659 (15) | 0.0402 (3) | |
C2 | 0.6168 (2) | 0.58783 (7) | 0.93513 (15) | 0.0436 (3) | |
H2 | 0.6969 | 0.5804 | 1.0259 | 0.052* | |
C3 | 0.5457 (2) | 0.53473 (7) | 0.84470 (14) | 0.0395 (3) | |
H3 | 0.5783 | 0.4909 | 0.8752 | 0.047* | |
C4 | 0.42631 (18) | 0.54581 (6) | 0.70904 (13) | 0.0313 (3) | |
C5 | 0.3781 (2) | 0.61125 (6) | 0.66323 (15) | 0.0378 (3) | |
H5 | 0.2987 | 0.6190 | 0.5723 | 0.045* | |
C6 | 0.4482 (2) | 0.66517 (7) | 0.75320 (17) | 0.0424 (3) | |
H6 | 0.4166 | 0.7092 | 0.7237 | 0.051* | |
C7 | 0.34457 (19) | 0.48612 (6) | 0.61666 (14) | 0.0349 (3) | |
C8 | 0.1939 (2) | 0.32045 (6) | 0.39199 (14) | 0.0370 (3) | |
C9 | 0.02010 (18) | 0.37170 (7) | 0.20317 (14) | 0.0350 (3) | |
N1 | 0.6422 (2) | 0.70814 (7) | 0.98345 (16) | 0.0554 (4) | |
N2 | 0.12815 (16) | 0.38183 (5) | 0.34091 (12) | 0.0352 (2) | |
H2N | 0.1630 | 0.4232 | 0.3935 | 0.042* | |
N3 | 0.12583 (18) | 0.27665 (6) | 0.28955 (13) | 0.0419 (3) | |
H3N | 0.1470 | 0.2300 | 0.2980 | 0.050* | |
N4 | 0.01422 (18) | 0.30828 (6) | 0.16723 (13) | 0.0415 (3) | |
N5 | 0.3061 (2) | 0.30868 (6) | 0.52092 (14) | 0.0546 (4) | |
H5A | 0.3503 | 0.2672 | 0.5476 | 0.066* | |
H5B | 0.3371 | 0.3434 | 0.5763 | 0.066* | |
N6 | −0.0649 (2) | 0.42254 (7) | 0.11816 (14) | 0.0478 (3) | |
H6A | −0.0507 | 0.4620 | 0.1533 | 0.057* | |
H6B | −0.1362 | 0.4100 | 0.0385 | 0.057* | |
O1 | 0.6188 (2) | 0.76516 (6) | 0.93599 (18) | 0.0773 (4) | |
O2 | 0.7257 (3) | 0.69499 (8) | 1.10651 (16) | 0.0888 (5) | |
O3 | 0.24541 (16) | 0.49644 (5) | 0.49201 (11) | 0.0478 (3) | |
O4 | 0.37626 (18) | 0.42890 (5) | 0.67293 (12) | 0.0518 (3) | |
O5 | 0.20562 (17) | 0.13888 (5) | 0.32618 (12) | 0.0516 (3) | |
H5AO | 0.3003 | 0.1230 | 0.2943 | 0.077* | |
H5BO | 0.1041 | 0.1162 | 0.2822 | 0.077* | |
O6 | 0.01665 (19) | 0.56608 (6) | 0.26751 (13) | 0.0589 (3) | |
H6AO | 0.0886 | 0.5529 | 0.3562 | 0.088* | |
H6BO | −0.0927 | 0.5865 | 0.2780 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0440 (7) | 0.0333 (6) | 0.0431 (7) | −0.0053 (5) | 0.0115 (6) | −0.0109 (5) |
C2 | 0.0512 (8) | 0.0400 (7) | 0.0337 (7) | −0.0024 (6) | 0.0014 (6) | −0.0045 (5) |
C3 | 0.0489 (8) | 0.0293 (6) | 0.0352 (6) | 0.0010 (5) | 0.0025 (6) | 0.0009 (5) |
C4 | 0.0340 (6) | 0.0265 (5) | 0.0316 (6) | −0.0020 (4) | 0.0059 (5) | −0.0007 (4) |
C5 | 0.0413 (7) | 0.0289 (6) | 0.0384 (7) | 0.0011 (5) | 0.0028 (5) | 0.0032 (5) |
C6 | 0.0482 (8) | 0.0251 (6) | 0.0516 (8) | 0.0019 (5) | 0.0098 (6) | 0.0001 (5) |
C7 | 0.0377 (6) | 0.0275 (6) | 0.0352 (6) | −0.0012 (5) | 0.0024 (5) | −0.0006 (5) |
C8 | 0.0405 (7) | 0.0269 (6) | 0.0384 (7) | −0.0021 (5) | 0.0017 (5) | −0.0006 (5) |
C9 | 0.0320 (6) | 0.0342 (6) | 0.0352 (6) | −0.0006 (5) | 0.0026 (5) | −0.0027 (5) |
N1 | 0.0634 (9) | 0.0411 (7) | 0.0603 (9) | −0.0095 (6) | 0.0143 (7) | −0.0194 (6) |
N2 | 0.0386 (6) | 0.0265 (5) | 0.0345 (6) | 0.0001 (4) | −0.0004 (4) | −0.0021 (4) |
N3 | 0.0489 (7) | 0.0265 (5) | 0.0426 (6) | −0.0020 (5) | −0.0006 (5) | −0.0032 (4) |
N4 | 0.0441 (6) | 0.0338 (6) | 0.0387 (6) | −0.0017 (5) | −0.0021 (5) | −0.0041 (5) |
N5 | 0.0730 (9) | 0.0319 (6) | 0.0425 (7) | 0.0040 (6) | −0.0126 (6) | 0.0009 (5) |
N6 | 0.0533 (7) | 0.0404 (6) | 0.0399 (6) | 0.0080 (5) | −0.0045 (5) | 0.0004 (5) |
O1 | 0.0944 (11) | 0.0375 (6) | 0.0920 (10) | −0.0042 (6) | 0.0115 (8) | −0.0217 (7) |
O2 | 0.1303 (14) | 0.0664 (9) | 0.0536 (8) | −0.0222 (9) | −0.0027 (8) | −0.0234 (7) |
O3 | 0.0591 (6) | 0.0337 (5) | 0.0373 (5) | 0.0006 (4) | −0.0096 (5) | −0.0014 (4) |
O4 | 0.0699 (7) | 0.0267 (5) | 0.0455 (6) | −0.0028 (4) | −0.0074 (5) | 0.0024 (4) |
O5 | 0.0571 (7) | 0.0361 (5) | 0.0538 (6) | −0.0023 (5) | 0.0018 (5) | −0.0070 (4) |
O6 | 0.0613 (7) | 0.0595 (7) | 0.0495 (6) | 0.0077 (6) | 0.0041 (5) | 0.0136 (5) |
C1—C6 | 1.373 (2) | C9—N4 | 1.3065 (17) |
C1—C2 | 1.374 (2) | C9—N6 | 1.3459 (18) |
C1—N1 | 1.4734 (18) | C9—N2 | 1.3748 (16) |
C2—C3 | 1.3831 (19) | N1—O1 | 1.219 (2) |
C2—H2 | 0.9300 | N1—O2 | 1.218 (2) |
C3—C4 | 1.3884 (18) | N2—H2N | 0.9671 |
C3—H3 | 0.9300 | N3—N4 | 1.3964 (17) |
C4—C5 | 1.3891 (17) | N3—H3N | 0.9397 |
C4—C7 | 1.5107 (17) | N5—H5A | 0.8975 |
C5—C6 | 1.3918 (19) | N5—H5B | 0.8689 |
C5—H5 | 0.9300 | N6—H6A | 0.8520 |
C6—H6 | 0.9300 | N6—H6B | 0.8459 |
C7—O3 | 1.2508 (16) | O5—H5AO | 0.8816 |
C7—O4 | 1.2573 (16) | O5—H5BO | 0.8682 |
C8—N3 | 1.3170 (17) | O6—H6AO | 0.9193 |
C8—N5 | 1.3203 (18) | O6—H6BO | 0.9165 |
C8—N2 | 1.3548 (16) | ||
C6—C1—C2 | 123.04 (13) | N5—C8—N2 | 125.02 (12) |
C6—C1—N1 | 119.40 (13) | N4—C9—N6 | 125.65 (12) |
C2—C1—N1 | 117.56 (13) | N4—C9—N2 | 111.90 (12) |
C1—C2—C3 | 117.91 (13) | N6—C9—N2 | 122.44 (12) |
C1—C2—H2 | 121.0 | O1—N1—O2 | 123.74 (15) |
C3—C2—H2 | 121.0 | O1—N1—C1 | 118.22 (15) |
C2—C3—C4 | 121.01 (13) | O2—N1—C1 | 118.04 (14) |
C2—C3—H3 | 119.5 | C8—N2—C9 | 106.10 (10) |
C4—C3—H3 | 119.5 | C8—N2—H2N | 123.8 |
C3—C4—C5 | 119.51 (11) | C9—N2—H2N | 129.9 |
C3—C4—C7 | 119.09 (11) | C8—N3—N4 | 111.24 (11) |
C5—C4—C7 | 121.35 (11) | C8—N3—H3N | 124.5 |
C4—C5—C6 | 120.10 (12) | N4—N3—H3N | 124.2 |
C4—C5—H5 | 119.9 | C9—N4—N3 | 103.62 (11) |
C6—C5—H5 | 119.9 | C8—N5—H5A | 121.2 |
C1—C6—C5 | 118.42 (12) | C8—N5—H5B | 116.2 |
C1—C6—H6 | 120.8 | H5A—N5—H5B | 122.6 |
C5—C6—H6 | 120.8 | C9—N6—H6A | 117.3 |
O3—C7—O4 | 124.21 (12) | C9—N6—H6B | 114.1 |
O3—C7—C4 | 118.71 (11) | H6A—N6—H6B | 128.3 |
O4—C7—C4 | 117.03 (11) | H5AO—O5—H5BO | 105.6 |
N3—C8—N5 | 127.85 (13) | H6AO—O6—H6BO | 107.7 |
N3—C8—N2 | 107.13 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3 | 0.97 | 1.76 | 2.7221 (14) | 176 |
N3—H3N···O5 | 0.94 | 1.86 | 2.8021 (16) | 176 |
N5—H5B···O4 | 0.87 | 1.93 | 2.7871 (17) | 170 |
N6—H6A···O6 | 0.85 | 2.34 | 3.1866 (19) | 174 |
N6—H6B···O5i | 0.85 | 2.29 | 3.1318 (17) | 170 |
N5—H5A···N4ii | 0.90 | 2.06 | 2.9224 (17) | 159 |
O5—H5AO···O6iii | 0.88 | 1.95 | 2.8156 (18) | 166 |
O5—H5BO···O4i | 0.87 | 1.92 | 2.7868 (16) | 176 |
O6—H6AO···O3 | 0.92 | 1.87 | 2.7363 (15) | 157 |
O6—H6BO···O4iv | 0.92 | 2.24 | 3.0419 (19) | 146 |
C6—H6···O2v | 0.93 | 2.45 | 3.333 (2) | 160 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the Mohammed V University in Rabat, for financial support.
References
Aznar, E., Ferrer, S., Borrás, J., Lloret, F., Liu-González, M., Rodríguez-Prieto, H. & García-Granda, S. (2006). Eur. J. Inorg. Chem. pp. 5115–5125. Web of Science CSD CrossRef Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H., Sumrra, S. H., Youssoufi, M. H. T. B. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 2739–2747. Web of Science CrossRef CAS PubMed Google Scholar
El Issami, S., Bazzi, L., Mihit, M., Hammouti, B., Kertit, S., Ait Addi, E. & Salghi, R. (2007). Pigm. Resin Technol. pp. 161–168. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fernandes, J. A., Liu, B., Tomé, J. P. C., Cunha-Silva, L. & Almeida Paz, F. A. (2015). Acta Cryst. E71, 840–843. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kofman, T. P. (2002). Russ. J. Org. Chem. 38, 1231–1243. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kuznetsov, Yu. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219–232. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ren, Y.-H., Li, W., Zhao, F.-Q., Yi, J.-H., Yan, B., Ma, H.-X., Xu, K.-Z., Song, J.-R. & Hu, R.-Z. (2013). J. Anal. Appl. Pyrolysis, 102, 89–96. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.