organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Chloro­benzo­yl)-1-(3,4-di­meth­­oxy­phen­yl)-3-iodo­quinolin-4(1H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, SJB Institute of Technology, Kengeri, Bangalore 560 060, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mychandru.10@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 11 January 2017; accepted 2 February 2017; online 14 February 2017)

In the title compound C24H17ClINO4, the iodo­quinolinyl moiety (r.m.s. deviation = 0.044 Å) makes dihedral angles of 87.44 (10) and 88.64 (10)° with the chloro- and meth­oxy-substituted benzene rings, respectively. The meth­oxy groups are present in synperiplanar and anti­periplanar conformations with respect to the benzene ring they are bound to, as indicated by the C—C—O—C torsion angle values of −16.2 (3) and 177.6 (2)°, respectively. The crystal structure features relatively strong meth­oxy­benzene-C—H⋯O(quinolin­yl) hydrogen bonds, leading to helical supra­molecular chains along the a-axis direction. Additional C—H⋯O inter­actions along with π-stacking [inter-centroid distance = 3.6070 (16) Å between quinolyl-NC5 and C6 rings] consolidate the three-dimensional mol­ecular packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinolones and their derivatives have contributed substanti­ally to the evolution of anti-microbial agents. The development of anti­biotic quinolone begun in 1962 with the discovery of nalidixic acid which was used to treat urinary tract infections (Lesher et al., 1962[Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem. 5, 1063-1065.]). Many diversely substituted 4-quinolones have been extensively investigated as anti-tumour (Nakamura et al., 2005[Nakamura, S., Kozuka, M., Bastow, K. F., Tokuda, H., Nishino, H., Suzuki, M., Tatsuzaki, J., Morris Natschke, S. L., Kuo, S. C. & Lee, K. H. (2005). Bioorg. Med. Chem. 13, 4396-4401.]), anti-viral (Santos et al., 2009[Santos, F. da C., et al. (2009). Bioorg. Med. Chem. 17, 5476-5481.]), anti-diabetic (Edmont et al., 2000[Edmont, D., Rocher, R., Plisson, C. & Chenault, J. (2000). Bioorg. Med. Chem. Lett. 10, 1831-1834.]), anti-trypanosomal (Wube et al., 2011[Wube, A. A., Bucar, F., Hochfellner, C., Blunder, M., Bauer, R. & Hüfner, A. (2011). Eur. J. Med. Chem. 46, 2091-2101.]) and anti-malarial agents (Vinayaka et al., 2014[Vinayaka, A. C., Sadashiva, M. P., Wu, X., Biryukov, S. S., Stoute, J. A., Rangappa, K. S. & Gowda, D. C. (2014). Org. Biomol. Chem. 12, 8555-8561.]). As part of our studies in this area, the title compound was synthesized to study its crystal structure.

In the title compound, Fig. 1[link], the mean plane of the iodo­quinoline moiety makes dihedral angles of 88.64 (10) and 87.44 (10)° with benzene rings (C2–C7) and (C19–C24), respectively. The iodine and chlorine atoms are almost coplanar with the iodo­quinoline and benzene (C19–C24) rings, with atoms I1 and Cl1 deviating from the respective mean planes by 0.109 (3) and 0.020 (1) Å, respectively. The meth­oxy groups are present in synperiplanar and antiperiplanar conformations with respect to the (C2–C7) ring moiety, as indicated by the torsion angle values of −16.2 (3) (C8—O2—C3—C4) and 177.6 (2)° (C1—O1—C2—C3), respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The crystal structure features relatively strong meth­oxy­benzene-C—H⋯O(quinolin­yl) hydrogen bonds (Table 1[link]), leading to helical supra­molecular chains along the a-axis direction. Additional C—H⋯O inter­actions along with π-stacking [inter-centroid distance = 3.6070 (16) Å between quinolyl-NC5 and C6 rings for symmetry operation[{1\over 2}] + x, y, [{1\over 2}] − z] consolidate the three-dimensional mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H0AC⋯O2i 0.96 2.53 3.357 (3) 145
C4—H4⋯O3ii 0.93 2.37 3.185 (3) 147
C20—H9⋯O3ii 0.93 2.55 3.263 (3) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Synthesis and crystallization

The starting compound 2-(2-chloro­benzo­yl)-1-(3,4-tri­meth­oxy­phen­yl)quinolin-4(1H)-one (0.5 g, 1 mmol) was dissolved in aceto­nitrile (5 ml) followed by the addition of ceric ammonium nitrate (0.11 mmol) and iodine (1.3 mmol). The mixture was stirred at 70°C under an inert atmosphere for 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and treated with an aqueous solution of sodium thio­sulfate, then extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure to afford the title compound as a crude product, which was purified using silica gel column chromatography. Crystals were obtained by slow evaporation of its ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H17ClINO4
Mr 545.74
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 8.7884 (19), 16.863 (3), 29.686 (6)
V3) 4399.4 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.61
Crystal size (mm) 0.28 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 56765, 3874, 3593
Rint 0.046
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.12
No. of reflections 3874
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

2-(2-Chlorobenzoyl)-1-(3,4-dimethoxyphenyl)-3-iodoquinolin-4(1H)-one top
Crystal data top
C24H17ClINO4F(000) = 2160
Mr = 545.74Dx = 1.648 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3874 reflections
a = 8.7884 (19) Åθ = 2.5–25.0°
b = 16.863 (3) ŵ = 1.61 mm1
c = 29.686 (6) ÅT = 296 K
V = 4399.4 (15) Å3Block, light-yellow
Z = 80.28 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3593 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 18.4 pixels mm-1h = 1010
ω and φ scansk = 2019
56765 measured reflectionsl = 3535
3874 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0219P)2 + 6.3895P]
where P = (Fo2 + 2Fc2)/3
3874 reflections(Δ/σ)max = 0.004
282 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.39094 (2)1.04870 (1)0.21059 (1)0.0231 (1)
Cl10.27999 (11)1.03024 (5)0.03373 (2)0.0477 (3)
O10.1757 (2)0.74428 (11)0.01813 (5)0.0259 (5)
O20.29338 (19)0.86211 (10)0.06210 (5)0.0236 (5)
O30.2765 (2)0.94436 (11)0.29303 (5)0.0272 (6)
O40.3203 (2)0.91957 (11)0.10683 (6)0.0261 (6)
N10.1004 (2)0.84994 (11)0.17668 (6)0.0153 (5)
C10.1169 (3)0.67708 (18)0.00627 (10)0.0376 (10)
C20.0991 (3)0.76620 (15)0.05630 (8)0.0213 (7)
C30.1650 (3)0.83057 (14)0.08001 (8)0.0179 (7)
C40.0980 (3)0.85657 (14)0.11953 (7)0.0169 (7)
C50.0345 (3)0.82028 (14)0.13488 (8)0.0180 (7)
C60.1004 (3)0.75814 (16)0.11208 (9)0.0253 (8)
C70.0321 (3)0.73079 (15)0.07250 (9)0.0269 (8)
C80.3381 (3)0.93844 (16)0.07906 (8)0.0258 (8)
C90.1894 (2)0.91661 (13)0.17572 (7)0.0134 (6)
C100.2502 (3)0.94889 (13)0.21374 (7)0.0158 (7)
C110.2200 (3)0.91699 (14)0.25809 (8)0.0185 (7)
C120.1132 (3)0.84990 (15)0.25812 (8)0.0195 (7)
C130.0577 (3)0.81681 (14)0.21792 (8)0.0173 (7)
C140.0431 (3)0.75209 (15)0.21921 (9)0.0237 (8)
C150.0889 (3)0.72195 (16)0.26027 (10)0.0317 (9)
C160.0356 (3)0.75544 (18)0.30039 (10)0.0332 (9)
C170.0641 (3)0.81755 (17)0.29940 (9)0.0273 (8)
C180.2210 (3)0.95053 (13)0.12885 (7)0.0168 (7)
C190.1243 (3)1.01877 (14)0.11448 (8)0.0181 (7)
C200.0077 (3)1.04505 (14)0.14276 (8)0.0203 (7)
C210.0893 (3)1.10621 (16)0.13033 (9)0.0289 (8)
C220.0687 (4)1.14313 (17)0.08892 (10)0.0389 (10)
C230.0457 (4)1.11858 (17)0.06040 (9)0.0404 (10)
C240.1404 (3)1.05705 (15)0.07267 (9)0.0287 (9)
H0AA0.115300.631500.013100.0560*
H0AB0.180700.666500.031800.0560*
H0AC0.015400.688400.016300.0560*
H40.141300.898000.135700.0200*
H90.005301.020900.170700.0240*
H100.167101.122300.149500.0350*
H110.132401.184600.080400.0470*
H12A0.255300.975100.075800.0390*
H12B0.424500.957300.062400.0390*
H12C0.364500.933900.110300.0390*
H170.078600.729700.192600.0280*
H180.155600.679200.261300.0380*
H190.068200.735300.327900.0400*
H200.100100.838700.326300.0330*
H210.059101.143600.032800.0480*
H230.189000.734700.122800.0300*
H240.075100.688500.056900.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0177 (1)0.0161 (1)0.0353 (1)0.0008 (1)0.0069 (1)0.0030 (1)
Cl10.0770 (6)0.0408 (4)0.0252 (3)0.0120 (4)0.0219 (4)0.0116 (3)
O10.0287 (10)0.0306 (10)0.0183 (8)0.0073 (8)0.0009 (7)0.0131 (7)
O20.0202 (9)0.0291 (9)0.0215 (8)0.0003 (8)0.0054 (7)0.0056 (7)
O30.0298 (11)0.0336 (11)0.0182 (9)0.0089 (8)0.0098 (7)0.0048 (7)
O40.0249 (10)0.0317 (10)0.0218 (9)0.0061 (8)0.0079 (8)0.0022 (8)
N10.0142 (10)0.0157 (9)0.0159 (9)0.0000 (8)0.0011 (7)0.0008 (8)
C10.0441 (18)0.0394 (17)0.0294 (15)0.0029 (14)0.0004 (13)0.0220 (13)
C20.0197 (13)0.0261 (13)0.0181 (12)0.0090 (10)0.0037 (10)0.0087 (10)
C30.0138 (12)0.0216 (12)0.0182 (11)0.0042 (10)0.0027 (9)0.0014 (9)
C40.0153 (12)0.0201 (12)0.0152 (11)0.0029 (9)0.0041 (9)0.0036 (9)
C50.0157 (12)0.0195 (12)0.0187 (11)0.0039 (9)0.0004 (9)0.0041 (9)
C60.0179 (13)0.0262 (13)0.0318 (14)0.0028 (11)0.0021 (11)0.0088 (11)
C70.0234 (14)0.0255 (14)0.0318 (14)0.0003 (11)0.0036 (11)0.0164 (11)
C80.0233 (13)0.0341 (15)0.0201 (12)0.0065 (12)0.0023 (11)0.0030 (11)
C90.0122 (11)0.0122 (10)0.0158 (11)0.0031 (9)0.0009 (9)0.0002 (9)
C100.0136 (12)0.0138 (11)0.0199 (12)0.0024 (9)0.0014 (9)0.0004 (9)
C110.0163 (12)0.0208 (12)0.0185 (12)0.0102 (10)0.0030 (9)0.0013 (10)
C120.0171 (12)0.0217 (12)0.0198 (12)0.0099 (10)0.0010 (9)0.0057 (10)
C130.0128 (11)0.0160 (12)0.0230 (12)0.0069 (10)0.0031 (10)0.0044 (9)
C140.0179 (13)0.0174 (12)0.0358 (14)0.0045 (10)0.0044 (11)0.0030 (10)
C150.0202 (13)0.0206 (13)0.0544 (19)0.0074 (11)0.0128 (12)0.0150 (13)
C160.0273 (15)0.0382 (16)0.0342 (15)0.0153 (13)0.0141 (12)0.0221 (13)
C170.0220 (14)0.0385 (16)0.0214 (12)0.0128 (12)0.0035 (11)0.0110 (11)
C180.0172 (12)0.0184 (12)0.0149 (11)0.0029 (10)0.0005 (9)0.0016 (9)
C190.0223 (13)0.0156 (11)0.0163 (11)0.0027 (10)0.0034 (9)0.0007 (9)
C200.0197 (12)0.0190 (12)0.0221 (12)0.0014 (10)0.0037 (10)0.0001 (10)
C210.0255 (14)0.0256 (14)0.0355 (15)0.0066 (11)0.0096 (12)0.0070 (12)
C220.0500 (19)0.0256 (14)0.0411 (17)0.0143 (14)0.0201 (15)0.0021 (13)
C230.069 (2)0.0289 (15)0.0234 (14)0.0103 (15)0.0088 (15)0.0075 (12)
C240.0431 (17)0.0231 (14)0.0199 (13)0.0010 (12)0.0008 (12)0.0009 (10)
Geometric parameters (Å, º) top
I1—C102.091 (2)C16—C171.366 (4)
Cl1—C241.745 (3)C18—C191.493 (3)
O1—C11.441 (3)C19—C201.397 (4)
O1—C21.369 (3)C19—C241.406 (4)
O2—C31.356 (3)C20—C211.388 (4)
O2—C81.437 (3)C21—C221.390 (4)
O3—C111.239 (3)C22—C231.378 (5)
O4—C181.209 (3)C23—C241.379 (4)
N1—C51.458 (3)C1—H0AA0.9600
N1—C91.370 (3)C1—H0AB0.9600
N1—C131.397 (3)C1—H0AC0.9600
C2—C31.417 (3)C4—H40.9300
C2—C71.385 (4)C6—H230.9300
C3—C41.384 (3)C7—H240.9300
C4—C51.392 (4)C8—H12A0.9600
C5—C61.375 (4)C8—H12B0.9600
C6—C71.398 (4)C8—H12C0.9600
C9—C101.362 (3)C14—H170.9300
C9—C181.530 (3)C15—H180.9300
C10—C111.447 (3)C16—H190.9300
C11—C121.470 (4)C17—H200.9300
C12—C131.405 (3)C20—H90.9300
C12—C171.409 (4)C21—H100.9300
C13—C141.406 (4)C22—H110.9300
C14—C151.381 (4)C23—H210.9300
C15—C161.399 (4)
C1—O1—C2116.9 (2)C19—C20—C21121.8 (2)
C3—O2—C8116.20 (18)C20—C21—C22119.2 (3)
C5—N1—C9119.39 (18)C21—C22—C23120.3 (3)
C5—N1—C13120.13 (19)C22—C23—C24120.3 (3)
C9—N1—C13119.99 (18)Cl1—C24—C19122.4 (2)
O1—C2—C3114.6 (2)Cl1—C24—C23116.4 (2)
O1—C2—C7125.5 (2)C19—C24—C23121.2 (2)
C3—C2—C7119.9 (2)O1—C1—H0AA110.00
O2—C3—C2116.5 (2)O1—C1—H0AB109.00
O2—C3—C4124.2 (2)O1—C1—H0AC109.00
C2—C3—C4119.3 (2)H0AA—C1—H0AB109.00
C3—C4—C5119.6 (2)H0AA—C1—H0AC109.00
N1—C5—C4117.4 (2)H0AB—C1—H0AC110.00
N1—C5—C6120.9 (2)C3—C4—H4120.00
C4—C5—C6121.7 (2)C5—C4—H4120.00
C5—C6—C7119.0 (2)C5—C6—H23121.00
C2—C7—C6120.5 (2)C7—C6—H23120.00
N1—C9—C10122.3 (2)C2—C7—H24120.00
N1—C9—C18115.43 (18)C6—C7—H24120.00
C10—C9—C18122.21 (19)O2—C8—H12A110.00
I1—C10—C9121.11 (16)O2—C8—H12B109.00
I1—C10—C11116.65 (16)O2—C8—H12C109.00
C9—C10—C11122.2 (2)H12A—C8—H12B110.00
O3—C11—C10123.4 (2)H12A—C8—H12C109.00
O3—C11—C12122.8 (2)H12B—C8—H12C109.00
C10—C11—C12113.8 (2)C13—C14—H17120.00
C11—C12—C13121.8 (2)C15—C14—H17120.00
C11—C12—C17119.6 (2)C14—C15—H18120.00
C13—C12—C17118.6 (2)C16—C15—H18120.00
N1—C13—C12119.5 (2)C15—C16—H19120.00
N1—C13—C14120.2 (2)C17—C16—H19120.00
C12—C13—C14120.3 (2)C12—C17—H20120.00
C13—C14—C15119.6 (2)C16—C17—H20120.00
C14—C15—C16120.4 (2)C19—C20—H9119.00
C15—C16—C17120.4 (3)C21—C20—H9119.00
C12—C17—C16120.8 (3)C20—C21—H10120.00
O4—C18—C9117.5 (2)C22—C21—H10120.00
O4—C18—C19126.1 (2)C21—C22—H11120.00
C9—C18—C19116.41 (19)C23—C22—H11120.00
C18—C19—C20119.4 (2)C22—C23—H21120.00
C18—C19—C24123.3 (2)C24—C23—H21120.00
C20—C19—C24117.3 (2)
C1—O1—C2—C3177.6 (2)C10—C9—C18—C1983.6 (3)
C1—O1—C2—C72.1 (4)I1—C10—C11—O32.2 (3)
C8—O2—C3—C2164.8 (2)I1—C10—C11—C12176.55 (17)
C8—O2—C3—C416.2 (3)C9—C10—C11—O3178.5 (2)
C9—N1—C5—C481.4 (3)C9—C10—C11—C122.8 (3)
C9—N1—C5—C699.5 (3)O3—C11—C12—C13176.1 (2)
C13—N1—C5—C490.5 (3)O3—C11—C12—C174.1 (4)
C13—N1—C5—C688.6 (3)C10—C11—C12—C135.1 (4)
C5—N1—C9—C10177.8 (2)C10—C11—C12—C17174.7 (2)
C5—N1—C9—C184.5 (3)C11—C12—C13—N12.3 (4)
C13—N1—C9—C105.9 (3)C11—C12—C13—C14179.3 (2)
C13—N1—C9—C18176.4 (2)C17—C12—C13—N1177.6 (2)
C5—N1—C13—C12175.2 (2)C17—C12—C13—C140.8 (4)
C5—N1—C13—C143.2 (3)C11—C12—C17—C16179.7 (3)
C9—N1—C13—C123.3 (3)C13—C12—C17—C160.1 (4)
C9—N1—C13—C14175.1 (2)N1—C13—C14—C15177.5 (2)
O1—C2—C3—O20.3 (3)C12—C13—C14—C150.9 (4)
O1—C2—C3—C4178.9 (2)C13—C14—C15—C160.0 (4)
C7—C2—C3—O2180.0 (2)C14—C15—C16—C171.0 (4)
C7—C2—C3—C40.8 (4)C15—C16—C17—C121.1 (4)
O1—C2—C7—C6179.8 (2)O4—C18—C19—C20176.2 (2)
C3—C2—C7—C60.1 (4)O4—C18—C19—C241.4 (4)
O2—C3—C4—C5179.7 (2)C9—C18—C19—C203.2 (3)
C2—C3—C4—C51.3 (4)C9—C18—C19—C24179.2 (2)
C3—C4—C5—N1180.0 (2)C18—C19—C20—C21177.5 (2)
C3—C4—C5—C60.9 (4)C24—C19—C20—C210.3 (4)
N1—C5—C6—C7179.0 (2)C18—C19—C24—Cl12.0 (4)
C4—C5—C6—C70.1 (4)C18—C19—C24—C23178.3 (3)
C5—C6—C7—C20.6 (4)C20—C19—C24—Cl1179.58 (19)
N1—C9—C10—I1178.10 (15)C20—C19—C24—C230.7 (4)
N1—C9—C10—C112.6 (3)C19—C20—C21—C220.9 (4)
C18—C9—C10—I10.5 (3)C20—C21—C22—C230.7 (4)
C18—C9—C10—C11179.8 (2)C21—C22—C23—C240.2 (5)
N1—C9—C18—O480.7 (3)C22—C23—C24—Cl1179.4 (2)
N1—C9—C18—C1998.7 (2)C22—C23—C24—C190.9 (4)
C10—C9—C18—O497.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H0AC···O2i0.962.533.357 (3)145
C4—H4···O3ii0.932.373.185 (3)147
C20—H9···O3ii0.932.553.263 (3)134
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors would like to thank the SJB Institute of Technology, Kengeri, Bangalore, for their support. MM would like to thank UGC, New Delhi, Government of India, for the award of project F.41–920/2012(SR).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdmont, D., Rocher, R., Plisson, C. & Chenault, J. (2000). Bioorg. Med. Chem. Lett. 10, 1831–1834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem. 5, 1063–1065.  CrossRef CAS Web of Science Google Scholar
First citationNakamura, S., Kozuka, M., Bastow, K. F., Tokuda, H., Nishino, H., Suzuki, M., Tatsuzaki, J., Morris Natschke, S. L., Kuo, S. C. & Lee, K. H. (2005). Bioorg. Med. Chem. 13, 4396–4401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSantos, F. da C., et al. (2009). Bioorg. Med. Chem. 17, 5476–5481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinayaka, A. C., Sadashiva, M. P., Wu, X., Biryukov, S. S., Stoute, J. A., Rangappa, K. S. & Gowda, D. C. (2014). Org. Biomol. Chem. 12, 8555–8561.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWube, A. A., Bucar, F., Hochfellner, C., Blunder, M., Bauer, R. & Hüfner, A. (2011). Eur. J. Med. Chem. 46, 2091–2101.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds