organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,7-Di­bromo-10′H-spiro­[fluorene-9,9′-phenan­thren]-10′-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry Tunghai University No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan, bInternational Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and cInstitute of Chemistry, Academia Sinica, 115 Taipei, Taiwan
*Correspondence e-mail: mwata@i2cner.kyushu-u.ac.jp, jaychang@thu.edu.tw

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 January 2017; accepted 23 February 2017; online 28 February 2017)

The title racemic spiro compound, C26H14Br2O, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The mean plane of the phenanthrene unit is twisted with respect to the mean plane of the fluorene unit by 82.38 (15) and 80.25 (5)° in mol­ecules A and B, respectively. In the crystal, the A and B mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and a pair of short Br⋯O contacts [2.935 (2) Å], forming a centrosymmetric four-mol­ecule unit. These units are linked by C—H⋯π inter­actions, forming ribbons propagating along the b-axis direction. The ribbons are linked by C—Br⋯π inter­actions, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The parent structure, 10′H-spiro­[fluorene-9,9′-phenanthren]-10′-one and its analogues have been studied for the reactivity of fluorene (Suzuki et al. 1962[Suzuki, K., Maeda, T., Nawa, N. & Sōda, Y. (1962). Bull. Chem. Soc. Jpn, 35, 1299-1302.]). They are also of inter­est as building blocks for the preparation of microporous materials (Taylor et al. 2016[Taylor, R. G. D., Bezzu, C. G., Carta, M., Msayib, K. J., Walker, J., Short, R., Kariuki, B. M. & McKeown, N. B. (2016). Chem. Eur. J. 22, 2466-2472.]) and for their electro-chemical properties (Debroy et al. 2007[Debroy, P., Lindeman, S. V. & Rathore, R. (2007). Org. Lett. 9, 4091-4094.]). Synthetic methods and physical properties of brominated 10′H-spiro­[fluorene-9,9′-phenanthren]-10′-one compounds have been reported (Suzuki et al., 1962[Suzuki, K., Maeda, T., Nawa, N. & Sōda, Y. (1962). Bull. Chem. Soc. Jpn, 35, 1299-1302.]; Borowitz et al., 1971[Borowitz, I. J., Anschel, M. & Readio, P. D. (1971). J. Org. Chem. 36, 553-560.]). Herein, we report on the high-yield synthesis and the crystal structure of the title racemic spiro compound, which to the best of our knowledge is a unique example of this type of compound.

The title compound, illustrated in Fig. 1[link], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the mean plane of the fluorene unit (r.m.s. deviation = 0.02 Å) is inclined to the mean plane of the phenanthrene unit (r.m.s. deviation = 0.096 Å) by 82.38 (5)°. In mol­ecule B, the corresponding angle is 80.25 (5)° (r.m.s. deviations are 0.02 and 0.123 Å, respectively), indicating that the conformation of the two mol­ecules is very similar.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the A and B mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and a pair of short Br⋯O contacts [2.935 (2) Å], forming a centrosymmetric four-mol­ecule unit (Table 1[link] and Fig. 2[link]). These units are linked by C—H⋯π inter­actions, forming ribbons along the b axis direction (Table 1[link] and Fig. 3[link]). The ribbons are linked by C—Br⋯π inter­actions, forming layers parallel to the ab plane (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg6, Cg15 and Cg17 are the centroids of the C1–C3/C8/C9/C14, C3–C8, C21–C26, C29–C24 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C44—H44⋯O1i 0.95 2.44 3.364 (3) 163
C5—H5⋯Cg6ii 0.95 2.69 3.554 (3) 151
C31—H31⋯Cg17iii 0.95 2.88 3.780 (3) 158
C24—Br2⋯Cg15iv 1.90 (1) 3.44 (1) 5.330 (3) 173 (1)
C50—Br4⋯Cg2 1.91 (1) 3.78 (1) 5.454 (3) 145 (1)
C50—Br4⋯Cg3 1.91 (1) 3.91 (1) 5.790 (3) 168 (1)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) x+1, y, z.
[Figure 2]
Figure 2
A view along the b axis of the centrosymmetric four-mol­ecule unit, formed by C—H⋯O hydrogen bonds (see Table 1[link]) and short Br⋯O contacts [2.935 (2) Å]. For clarity, only H atom H44 has been included.
[Figure 3]
Figure 3
A view along the a axis of the ribbons formed by the C—H⋯π inter­actions (see Table 1[link]) that link the centrosymmetric four-mol­ecule units. For clarity, only H atoms H44, H5 and H31 have been included.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title compound. The various inter­molecular contacts are illustrated by single or mulitple dashed lines (see Table 1[link]). For clarity, only H atoms H44, H5 and H31 have been included.

Synthesis and crystallization

The title compound was synthesized from the reaction of 10′H-spiro­[fluorene-9,9′-phenanthren]-10′-one (1 mg, 2.9 mmol) and bromine (0.4 ml, 7.76 mmol) in di­chloro­methane at room temperature (86% yield). Colourless plate-like crystals of the title compound were grown by slow evaporation, at room temperature, of a solution in di­chloro­methane (m.p. 533–535 K). 1H (400 MHz, CDCl3): δ 8.22 (d, 1H, J = 8.12 Hz), 8.14 (d, 1H, J = 7.8 Hz), 8.03 (dd, 1H, J = 7.76, 1.32 Hz), 7.84 (t, 1H, J = 7.92 Hz), 7.66 (s, 1H), 7.64 (s, 1H), 7.49–7.55 (m, 3H), 7.43 (t, 1H, J = 7.86 Hz), 7.13–7.17 (m, 3H), 6.59 (dd, 1H, J = 7.88, 1.12 Hz). 13C (100 MHz, CDCl3): δ 195.7, 149.1, 139.6, 137.7, 137.5, 135.4, 131.7, 130.3, 129.5, 129.3, 128.8, 128.7, 128.6, 128.2, 127.9, 124.3, 123.4, 121.9, 121.8.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H14Br2O
Mr 502.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.511 (1), 8.9191 (7), 25.2761 (15)
β (°) 92.179 (2)
V3) 3944.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.13
Crystal size (mm) 0.44 × 0.30 × 0.26
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.640, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 122604, 8667, 7162
Rint 0.072
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 1.03
No. of reflections 8667
No. of parameters 523
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,7-Dibromo-10'H-spiro[fluorene-9,9'-phenanthren]-10'-one top
Crystal data top
C26H14Br2OF(000) = 1984
Mr = 502.19Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.511 (1) ÅCell parameters from 9798 reflections
b = 8.9191 (7) Åθ = 2.7–27.1°
c = 25.2761 (15) ŵ = 4.13 mm1
β = 92.179 (2)°T = 100 K
V = 3944.8 (4) Å3Prism, colourless
Z = 80.44 × 0.30 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
7162 reflections with I > 2σ(I)
φ and ω scansRint = 0.072
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 27.1°, θmin = 2.0°
Tmin = 0.640, Tmax = 0.971h = 2222
122604 measured reflectionsk = 1111
8667 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0228P)2 + 4.6257P]
where P = (Fo2 + 2Fc2)/3
8667 reflections(Δ/σ)max = 0.002
523 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58632 (2)0.45391 (3)0.53916 (2)0.01768 (6)
Br21.17959 (2)0.52190 (3)0.62371 (2)0.02688 (7)
O10.88959 (10)0.17311 (18)0.55147 (6)0.0196 (4)
C10.87687 (13)0.3717 (2)0.61400 (9)0.0135 (5)
C20.89106 (13)0.2074 (2)0.59816 (9)0.0140 (5)
C30.91023 (12)0.0977 (3)0.64026 (9)0.0139 (5)
C40.93583 (13)0.0449 (3)0.62497 (10)0.0178 (5)
H40.93990.06770.58850.021*
C50.95512 (15)0.1518 (3)0.66266 (10)0.0239 (6)
H50.97260.24790.65230.029*
C60.94871 (16)0.1173 (3)0.71570 (11)0.0288 (6)
H60.96230.19030.74180.035*
C70.92282 (16)0.0221 (3)0.73140 (10)0.0261 (6)
H70.91860.04290.76800.031*
C80.90270 (13)0.1329 (3)0.69407 (9)0.0171 (5)
C90.87267 (13)0.2809 (3)0.70961 (9)0.0163 (5)
C100.85475 (15)0.3109 (3)0.76247 (10)0.0234 (6)
H100.86250.23510.78850.028*
C110.82627 (16)0.4481 (3)0.77695 (10)0.0274 (6)
H110.81440.46560.81280.033*
C120.81468 (16)0.5607 (3)0.74001 (10)0.0272 (6)
H120.79550.65550.75030.033*
C130.83150 (14)0.5335 (3)0.68758 (10)0.0218 (5)
H130.82360.61030.66190.026*
C140.85986 (13)0.3944 (3)0.67232 (9)0.0149 (5)
C150.81596 (13)0.4414 (2)0.57728 (9)0.0139 (5)
C160.73893 (13)0.4104 (3)0.57548 (9)0.0155 (5)
H160.71810.33710.59810.019*
C170.69262 (13)0.4903 (3)0.53939 (9)0.0153 (5)
C180.72257 (14)0.5961 (3)0.50532 (9)0.0171 (5)
H180.68990.64650.48020.021*
C190.80014 (14)0.6276 (3)0.50815 (9)0.0164 (5)
H190.82100.70070.48550.020*
C200.84714 (13)0.5506 (3)0.54469 (9)0.0150 (5)
C210.92914 (13)0.5620 (2)0.55759 (9)0.0144 (5)
C220.98559 (13)0.6525 (3)0.53700 (9)0.0170 (5)
H220.97320.72270.50970.020*
C231.06016 (14)0.6384 (3)0.55690 (10)0.0201 (5)
H231.09940.69900.54320.024*
C241.07723 (13)0.5356 (3)0.59686 (10)0.0187 (5)
C251.02210 (13)0.4439 (3)0.61843 (9)0.0168 (5)
H251.03480.37380.64570.020*
C260.94788 (13)0.4597 (2)0.59830 (9)0.0144 (5)
Br30.11825 (2)0.06102 (3)0.58188 (2)0.02152 (6)
Br40.72200 (2)0.00951 (3)0.61494 (2)0.02122 (6)
O20.44110 (9)0.33247 (19)0.57462 (6)0.0209 (4)
C270.42160 (12)0.1372 (2)0.63726 (9)0.0126 (4)
C280.42082 (12)0.3019 (3)0.61883 (9)0.0141 (5)
C290.38932 (13)0.4159 (3)0.65432 (9)0.0155 (5)
C300.37581 (14)0.5601 (3)0.63376 (10)0.0212 (5)
H300.38810.58250.59830.025*
C310.34463 (15)0.6697 (3)0.66509 (11)0.0257 (6)
H310.33550.76740.65130.031*
C320.32685 (15)0.6360 (3)0.71668 (11)0.0265 (6)
H320.30540.71110.73820.032*
C330.34006 (15)0.4940 (3)0.73721 (10)0.0229 (5)
H330.32690.47280.77250.028*
C340.37253 (13)0.3811 (3)0.70678 (9)0.0166 (5)
C350.39221 (13)0.2317 (3)0.72944 (9)0.0151 (5)
C360.38903 (15)0.2040 (3)0.78410 (10)0.0231 (6)
H360.37280.28180.80680.028*
C370.40892 (15)0.0663 (3)0.80551 (10)0.0251 (6)
H370.40600.04970.84250.030*
C380.43320 (14)0.0476 (3)0.77287 (10)0.0218 (5)
H380.44650.14270.78740.026*
C390.43804 (13)0.0223 (3)0.71900 (9)0.0174 (5)
H390.45540.10030.69680.021*
C400.41770 (13)0.1161 (3)0.69691 (9)0.0138 (5)
C410.35281 (13)0.0666 (2)0.60646 (9)0.0137 (5)
C420.27603 (13)0.0989 (3)0.61086 (9)0.0151 (5)
H420.25900.16930.63610.018*
C430.22452 (13)0.0234 (3)0.57650 (9)0.0165 (5)
C440.24804 (14)0.0779 (3)0.53878 (9)0.0202 (5)
H440.21150.12620.51580.024*
C450.32557 (14)0.1082 (3)0.53493 (10)0.0207 (5)
H450.34250.17730.50930.025*
C460.37807 (14)0.0363 (3)0.56894 (9)0.0160 (5)
C470.46145 (13)0.0465 (3)0.57357 (9)0.0162 (5)
C480.51275 (14)0.1339 (3)0.54643 (10)0.0219 (5)
H480.49500.20140.51960.026*
C490.59027 (14)0.1209 (3)0.55918 (10)0.0212 (5)
H490.62620.17970.54110.025*
C500.61495 (13)0.0219 (3)0.59844 (10)0.0171 (5)
C510.56498 (13)0.0679 (3)0.62596 (9)0.0155 (5)
H510.58310.13600.65250.019*
C520.48773 (13)0.0537 (2)0.61306 (9)0.0142 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01159 (11)0.02131 (12)0.01997 (12)0.00043 (9)0.00161 (9)0.00174 (9)
Br20.01206 (12)0.04248 (16)0.02601 (14)0.00319 (11)0.00067 (10)0.01276 (12)
O10.0257 (9)0.0190 (8)0.0141 (8)0.0006 (7)0.0001 (7)0.0026 (7)
C10.0126 (11)0.0148 (11)0.0129 (11)0.0016 (9)0.0004 (9)0.0004 (9)
C20.0081 (11)0.0158 (11)0.0182 (12)0.0033 (9)0.0005 (9)0.0005 (9)
C30.0085 (11)0.0165 (11)0.0166 (11)0.0018 (9)0.0001 (9)0.0005 (9)
C40.0154 (12)0.0177 (12)0.0200 (12)0.0006 (10)0.0003 (10)0.0024 (10)
C50.0239 (14)0.0147 (12)0.0331 (15)0.0052 (10)0.0000 (11)0.0007 (10)
C60.0375 (16)0.0235 (14)0.0249 (14)0.0085 (12)0.0043 (12)0.0075 (11)
C70.0339 (15)0.0270 (14)0.0175 (13)0.0041 (12)0.0013 (11)0.0026 (11)
C80.0133 (12)0.0197 (12)0.0181 (12)0.0008 (9)0.0000 (9)0.0014 (10)
C90.0120 (11)0.0218 (12)0.0152 (12)0.0000 (9)0.0008 (9)0.0002 (9)
C100.0242 (14)0.0306 (14)0.0155 (12)0.0035 (11)0.0032 (10)0.0002 (10)
C110.0281 (15)0.0379 (16)0.0167 (12)0.0029 (12)0.0073 (11)0.0056 (11)
C120.0296 (15)0.0265 (14)0.0256 (14)0.0069 (12)0.0035 (11)0.0092 (11)
C130.0217 (13)0.0218 (13)0.0219 (13)0.0038 (10)0.0016 (10)0.0016 (10)
C140.0106 (11)0.0198 (12)0.0143 (11)0.0008 (9)0.0000 (9)0.0029 (9)
C150.0146 (11)0.0134 (11)0.0135 (11)0.0019 (9)0.0001 (9)0.0009 (9)
C160.0159 (12)0.0155 (11)0.0151 (11)0.0007 (9)0.0017 (9)0.0011 (9)
C170.0092 (11)0.0186 (12)0.0180 (12)0.0010 (9)0.0001 (9)0.0025 (9)
C180.0171 (12)0.0199 (12)0.0144 (11)0.0045 (10)0.0000 (9)0.0000 (9)
C190.0205 (12)0.0151 (12)0.0137 (11)0.0008 (9)0.0034 (10)0.0034 (9)
C200.0151 (12)0.0149 (11)0.0153 (11)0.0005 (9)0.0044 (9)0.0030 (9)
C210.0147 (11)0.0145 (11)0.0142 (11)0.0008 (9)0.0026 (9)0.0033 (9)
C220.0193 (12)0.0147 (11)0.0174 (12)0.0017 (10)0.0051 (10)0.0026 (9)
C230.0176 (12)0.0197 (12)0.0235 (13)0.0062 (10)0.0082 (10)0.0079 (10)
C240.0112 (11)0.0242 (13)0.0207 (12)0.0016 (10)0.0007 (9)0.0119 (10)
C250.0143 (12)0.0202 (12)0.0159 (11)0.0007 (10)0.0004 (9)0.0055 (9)
C260.0135 (11)0.0157 (11)0.0142 (11)0.0001 (9)0.0039 (9)0.0061 (9)
Br30.01114 (12)0.02792 (13)0.02541 (13)0.00354 (10)0.00065 (9)0.00470 (10)
Br40.01141 (12)0.02510 (13)0.02731 (13)0.00130 (9)0.00279 (9)0.00374 (10)
O20.0185 (9)0.0245 (9)0.0200 (9)0.0008 (7)0.0050 (7)0.0069 (7)
C270.0087 (11)0.0165 (11)0.0126 (11)0.0010 (9)0.0007 (9)0.0004 (9)
C280.0076 (11)0.0178 (11)0.0167 (12)0.0022 (9)0.0035 (9)0.0023 (9)
C290.0099 (11)0.0152 (11)0.0210 (12)0.0023 (9)0.0034 (9)0.0000 (9)
C300.0157 (12)0.0189 (12)0.0283 (14)0.0050 (10)0.0058 (10)0.0048 (10)
C310.0228 (14)0.0139 (12)0.0398 (16)0.0013 (10)0.0087 (12)0.0017 (11)
C320.0240 (14)0.0193 (13)0.0356 (16)0.0040 (11)0.0061 (12)0.0113 (11)
C330.0224 (13)0.0241 (13)0.0221 (13)0.0011 (11)0.0022 (10)0.0058 (10)
C340.0112 (11)0.0187 (12)0.0194 (12)0.0040 (9)0.0040 (9)0.0034 (10)
C350.0122 (11)0.0194 (12)0.0137 (11)0.0030 (9)0.0007 (9)0.0014 (9)
C360.0249 (14)0.0274 (14)0.0172 (12)0.0001 (11)0.0021 (10)0.0026 (10)
C370.0251 (14)0.0362 (15)0.0141 (12)0.0023 (12)0.0006 (10)0.0049 (11)
C380.0190 (13)0.0239 (13)0.0222 (13)0.0020 (10)0.0021 (10)0.0095 (10)
C390.0152 (12)0.0182 (12)0.0186 (12)0.0009 (9)0.0006 (9)0.0000 (9)
C400.0099 (11)0.0185 (11)0.0128 (11)0.0046 (9)0.0017 (9)0.0005 (9)
C410.0143 (11)0.0149 (11)0.0116 (11)0.0027 (9)0.0013 (9)0.0026 (9)
C420.0140 (11)0.0173 (11)0.0141 (11)0.0020 (9)0.0024 (9)0.0028 (9)
C430.0104 (11)0.0230 (12)0.0160 (11)0.0021 (9)0.0004 (9)0.0062 (9)
C440.0181 (13)0.0255 (13)0.0169 (12)0.0078 (10)0.0015 (10)0.0001 (10)
C450.0197 (13)0.0251 (13)0.0175 (12)0.0044 (11)0.0015 (10)0.0048 (10)
C460.0169 (12)0.0173 (12)0.0139 (11)0.0024 (10)0.0014 (9)0.0002 (9)
C470.0161 (12)0.0167 (11)0.0158 (11)0.0017 (9)0.0010 (9)0.0006 (9)
C480.0214 (13)0.0212 (13)0.0232 (13)0.0004 (10)0.0029 (10)0.0070 (10)
C490.0175 (13)0.0205 (13)0.0262 (13)0.0019 (10)0.0067 (10)0.0026 (10)
C500.0108 (11)0.0186 (12)0.0219 (12)0.0003 (9)0.0018 (9)0.0044 (10)
C510.0139 (11)0.0172 (11)0.0154 (11)0.0013 (9)0.0003 (9)0.0004 (9)
C520.0146 (11)0.0135 (11)0.0147 (11)0.0013 (9)0.0025 (9)0.0026 (9)
Geometric parameters (Å, º) top
Br1—C171.890 (2)Br3—C431.901 (2)
Br2—C241.896 (2)Br4—C501.908 (2)
O1—C21.219 (3)O2—C281.216 (3)
C1—C151.520 (3)C27—C401.523 (3)
C1—C141.529 (3)C27—C521.524 (3)
C1—C261.536 (3)C27—C281.541 (3)
C1—C21.541 (3)C27—C411.544 (3)
C2—C31.475 (3)C28—C291.476 (3)
C3—C41.407 (3)C29—C341.404 (3)
C3—C81.407 (3)C29—C301.405 (3)
C4—C51.381 (3)C30—C311.383 (4)
C4—H40.9500C30—H300.9500
C5—C61.384 (4)C31—C321.385 (4)
C5—H50.9500C31—H310.9500
C6—C71.387 (4)C32—C331.385 (4)
C6—H60.9500C32—H320.9500
C7—C81.402 (3)C33—C341.401 (3)
C7—H70.9500C33—H330.9500
C8—C91.480 (3)C34—C351.485 (3)
C9—C141.395 (3)C35—C401.403 (3)
C9—C101.409 (3)C35—C361.407 (3)
C10—C111.377 (4)C36—C371.382 (4)
C10—H100.9500C36—H360.9500
C11—C121.381 (4)C37—C381.385 (4)
C11—H110.9500C37—H370.9500
C12—C131.390 (4)C38—C391.386 (3)
C12—H120.9500C38—H380.9500
C13—C141.396 (3)C39—C401.396 (3)
C13—H130.9500C39—H390.9500
C15—C161.376 (3)C41—C421.384 (3)
C15—C201.400 (3)C41—C461.403 (3)
C16—C171.394 (3)C42—C431.401 (3)
C16—H160.9500C42—H420.9500
C17—C181.393 (3)C43—C441.388 (3)
C18—C191.386 (3)C44—C451.391 (3)
C18—H180.9500C44—H440.9500
C19—C201.395 (3)C45—C461.391 (3)
C19—H190.9500C45—H450.9500
C20—C211.464 (3)C46—C471.463 (3)
C21—C221.392 (3)C47—C481.390 (3)
C21—C261.405 (3)C47—C521.404 (3)
C22—C231.387 (3)C48—C491.388 (3)
C22—H220.9500C48—H480.9500
C23—C241.389 (4)C49—C501.386 (3)
C23—H230.9500C49—H490.9500
C24—C251.392 (3)C50—C511.392 (3)
C25—C261.385 (3)C51—C521.385 (3)
C25—H250.9500C51—H510.9500
C15—C1—C14112.13 (18)C40—C27—C52113.59 (18)
C15—C1—C26100.90 (18)C40—C27—C28114.62 (19)
C14—C1—C26111.76 (18)C52—C27—C28110.03 (18)
C15—C1—C2110.29 (18)C40—C27—C41112.67 (18)
C14—C1—C2114.57 (19)C52—C27—C41100.86 (18)
C26—C1—C2106.20 (18)C28—C27—C41103.81 (17)
O1—C2—C3121.9 (2)O2—C28—C29122.2 (2)
O1—C2—C1119.5 (2)O2—C28—C27119.5 (2)
C3—C2—C1118.55 (19)C29—C28—C27118.16 (19)
C4—C3—C8120.6 (2)C34—C29—C30120.9 (2)
C4—C3—C2117.9 (2)C34—C29—C28121.2 (2)
C8—C3—C2121.5 (2)C30—C29—C28117.9 (2)
C5—C4—C3120.4 (2)C31—C30—C29120.0 (2)
C5—C4—H4119.8C31—C30—H30120.0
C3—C4—H4119.8C29—C30—H30120.0
C4—C5—C6119.2 (2)C30—C31—C32119.6 (2)
C4—C5—H5120.4C30—C31—H31120.2
C6—C5—H5120.4C32—C31—H31120.2
C5—C6—C7121.1 (2)C33—C32—C31120.7 (2)
C5—C6—H6119.5C33—C32—H32119.6
C7—C6—H6119.5C31—C32—H32119.6
C6—C7—C8121.1 (2)C32—C33—C34121.1 (2)
C6—C7—H7119.5C32—C33—H33119.4
C8—C7—H7119.5C34—C33—H33119.4
C7—C8—C3117.6 (2)C33—C34—C29117.6 (2)
C7—C8—C9122.2 (2)C33—C34—C35121.7 (2)
C3—C8—C9120.2 (2)C29—C34—C35120.6 (2)
C14—C9—C10117.8 (2)C40—C35—C36118.2 (2)
C14—C9—C8121.2 (2)C40—C35—C34120.5 (2)
C10—C9—C8121.0 (2)C36—C35—C34121.3 (2)
C11—C10—C9121.1 (2)C37—C36—C35121.4 (2)
C11—C10—H10119.4C37—C36—H36119.3
C9—C10—H10119.4C35—C36—H36119.3
C10—C11—C12120.8 (2)C36—C37—C38119.8 (2)
C10—C11—H11119.6C36—C37—H37120.1
C12—C11—H11119.6C38—C37—H37120.1
C11—C12—C13119.1 (2)C37—C38—C39119.9 (2)
C11—C12—H12120.4C37—C38—H38120.1
C13—C12—H12120.4C39—C38—H38120.1
C12—C13—C14120.6 (2)C38—C39—C40120.8 (2)
C12—C13—H13119.7C38—C39—H39119.6
C14—C13—H13119.7C40—C39—H39119.6
C9—C14—C13120.5 (2)C39—C40—C35119.9 (2)
C9—C14—C1121.5 (2)C39—C40—C27119.0 (2)
C13—C14—C1117.9 (2)C35—C40—C27121.1 (2)
C16—C15—C20121.6 (2)C42—C41—C46121.5 (2)
C16—C15—C1127.0 (2)C42—C41—C27128.0 (2)
C20—C15—C1111.3 (2)C46—C41—C27110.35 (19)
C15—C16—C17117.7 (2)C41—C42—C43117.0 (2)
C15—C16—H16121.2C41—C42—H42121.5
C17—C16—H16121.2C43—C42—H42121.5
C18—C17—C16121.9 (2)C44—C43—C42122.6 (2)
C18—C17—Br1120.57 (17)C44—C43—Br3118.75 (18)
C16—C17—Br1117.56 (17)C42—C43—Br3118.68 (18)
C19—C18—C17119.8 (2)C43—C44—C45119.4 (2)
C19—C18—H18120.1C43—C44—H44120.3
C17—C18—H18120.1C45—C44—H44120.3
C18—C19—C20119.1 (2)C46—C45—C44119.4 (2)
C18—C19—H19120.4C46—C45—H45120.3
C20—C19—H19120.4C44—C45—H45120.3
C19—C20—C15119.9 (2)C45—C46—C41120.1 (2)
C19—C20—C21131.5 (2)C45—C46—C47130.9 (2)
C15—C20—C21108.6 (2)C41—C46—C47109.0 (2)
C22—C21—C26120.1 (2)C48—C47—C52120.5 (2)
C22—C21—C20131.4 (2)C48—C47—C46131.1 (2)
C26—C21—C20108.5 (2)C52—C47—C46108.5 (2)
C23—C22—C21119.0 (2)C49—C48—C47118.9 (2)
C23—C22—H22120.5C49—C48—H48120.5
C21—C22—H22120.5C47—C48—H48120.5
C22—C23—C24119.8 (2)C50—C49—C48119.7 (2)
C22—C23—H23120.1C50—C49—H49120.2
C24—C23—H23120.1C48—C49—H49120.2
C23—C24—C25122.7 (2)C49—C50—C51122.7 (2)
C23—C24—Br2118.51 (18)C49—C50—Br4118.06 (18)
C25—C24—Br2118.82 (19)C51—C50—Br4119.25 (18)
C26—C25—C24116.8 (2)C52—C51—C50117.2 (2)
C26—C25—H25121.6C52—C51—H51121.4
C24—C25—H25121.6C50—C51—H51121.4
C25—C26—C21121.7 (2)C51—C52—C47121.1 (2)
C25—C26—C1127.6 (2)C51—C52—C27127.6 (2)
C21—C26—C1110.6 (2)C47—C52—C27111.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg6, Cg15 and Cg17 are the centroids of the C1–C3/C8/C9/C14, C3–C8, C21–C26, C29–C24 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C44—H44···O1i0.952.443.364 (3)163
C5—H5···Cg6ii0.952.693.554 (3)151
C31—H31···Cg17iii0.952.883.780 (3)158
C24—Br2···Cg15iv1.90 (1)3.44 (1)5.330 (3)173 (1)
C50—Br4···Cg21.91 (1)3.78 (1)5.454 (3)145 (1)
C50—Br4···Cg31.91 (1)3.91 (1)5.790 (3)168 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z.
 

Funding information

Funding for this research was provided by: Ministry of Science and Technology, Taiwan (award No. MOST 103–2113-M-029–007-MY2); Ministry of Education, Culture, Sports, Science and Technology (MEXT), World Premier International Research Centre Initiative (WPI)

References

First citationBorowitz, I. J., Anschel, M. & Readio, P. D. (1971). J. Org. Chem. 36, 553–560.  CrossRef CAS Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebroy, P., Lindeman, S. V. & Rathore, R. (2007). Org. Lett. 9, 4091–4094.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, K., Maeda, T., Nawa, N. & Sōda, Y. (1962). Bull. Chem. Soc. Jpn, 35, 1299–1302.  CrossRef CAS Google Scholar
First citationTaylor, R. G. D., Bezzu, C. G., Carta, M., Msayib, K. J., Walker, J., Short, R., Kariuki, B. M. & McKeown, N. B. (2016). Chem. Eur. J. 22, 2466–2472.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds