organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[(3aR*,3bS*)-1,3b,7,7-Tetra­methyl-3a,3b,4,5,6,7,7a,7b-octa­hydro-3H-cyclo­penta­[3,4]cyclo­buta[1,2]benzen-3a-yl]acetamide

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: aitelhad2017@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 February 2017; accepted 17 February 2017; online 24 February 2017)

The title compound, C17H27NO, is built up from a four-membered ring to which a six- and a five-membered ring are fused. The cyclo­hexane ring has a chair conformation, while the cyclo­pentene ring has an envelope conformation, with the C atom substituted by the acetamide group as the flap. The dihedral angles between the mean plane of the central cyclo­butane ring and the mean planes of the cyclo­pentene and cyclo­hexane rings are 62.52 (2) and 61.06 (11)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as that of Atlas cedar (Cedrus atlantica). This oil is made up mainly (75%) of bicyclic sesquiterpene hydro­carbons, among which is found the compound, β-himachalene (2,6,6,9-tetra­methylbi­cyclo [5.4.01,7]undeca-1,8-diene; El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team (Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]; Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.], 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]) in order to prepare new products having olfactive properties suitable for the perfume or cosmetics industries. These compounds have been tested, using the food-poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]). Herein, we present the crystal structure of the title compound, synthesized by the reaction of 6α,7α-ep­oxy­himachalene with BF3OEt in aceto­nitrile under argon.

The title compound, is built up from three fused rings (Fig. 1[link]). The central four-membered cyclo­butane ring has a folded conformation, with the C6/C7/C11 plane inclined to the C6/C1/C11 plane by 24.99 (17)°. The cyclo­hexane ring, C1–C6, has a chair conformation, while the cyclo­pentene ring, C7–C11, has an envelope conformation with atom C11 as the flap. The dihedral angles between the mean plane of the central cyclo­butane ring and mean planes of the cyclo­pentene and cyclo­hexane rings are 62.52 (2) and 61.06 (11)°, respectively. The latter two ring mean planes are inclined to one another by 24.29 (10)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains running along the b-axis direction (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯Oi 0.86 2.18 2.9962 (18) 158
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound, showing mol­ecules linked by N—H⋯O hydrogen bonds (dashed lines; see Table 1[link]), forming chains along [010]. For clarity, C-bound H atoms have been omitted.

The compound crystallized in the chiral space group P212121; however, it was only possible crystallographically to determine the relative configuration of the asymmetric centers, C11 and C1 (viz. 3aR*,3bS*) [Flack parameter = 0.2 (3)].

Synthesis and crystallization

1 g (4.5 mmol) of 6α,7α-ep­oxy­himachalene (El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]) was dissolved in 10 ml of CH3CN and stirred at 273 K under argon. BF3OEt (1% mmol) was added to the solution, and the reaction mixture was stirred and monitored by TLC. After completion of the reaction, the solvent was removed and the residue obtained was chromatographed on silica eluting with hexa­ne–ethyl­acetate (90:10), which allowed the isolation of the title compound (yield 783 mg, 68%). It was recrystallized from ethyl acetate with colourless prismatic crystals being obtained on slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H27NO
Mr 261.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 9.7147 (3), 10.0052 (3), 16.3078 (5)
V3) 1585.08 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.24 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.679, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21647, 3245, 3045
Rint 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.06
No. of reflections 3245
No. of parameters 177
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Absolute structure Flack x determined using 2562 quotients [(I+)−(I)]/[(I+)+(I)] Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.2 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[(3aR*,3bS*)-1,3b,7,7-Tetramethyl-3,3b,4,5,6,7,7a,7b-octahydro-3aH-cyclopenta[3,4]cyclobuta[1,2]benzen-3a-yl]acetamide top
Crystal data top
C17H27NODx = 1.104 Mg m3
Mr = 261.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3245 reflections
a = 9.7147 (3) Åθ = 2.4–26.4°
b = 10.0052 (3) ŵ = 0.07 mm1
c = 16.3078 (5) ÅT = 296 K
V = 1585.08 (8) Å3Prismatic, colourless
Z = 40.24 × 0.2 × 0.15 mm
F(000) = 576
Data collection top
Bruker X8 APEX
diffractometer
3045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.679, Tmax = 0.746k = 1212
21647 measured reflectionsl = 2020
3245 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1181P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3245 reflectionsΔρmax = 0.16 e Å3
177 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack x determined using 2562 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.46368 (18)0.20049 (12)0.74419 (10)0.0619 (4)
N0.55804 (17)0.40475 (13)0.73000 (9)0.0411 (3)
H10.56380.48440.74950.049*
C110.64696 (18)0.36750 (15)0.66154 (9)0.0360 (4)
C120.4681 (2)0.31984 (17)0.76358 (11)0.0453 (4)
C60.69562 (17)0.43016 (16)0.53776 (10)0.0364 (3)
H60.76760.36660.52190.044*
C70.73241 (18)0.48392 (16)0.62519 (10)0.0375 (4)
H70.69590.57310.63730.045*
C80.8777 (2)0.4611 (2)0.65449 (11)0.0465 (4)
C10.57532 (19)0.34851 (16)0.57585 (10)0.0377 (4)
C100.7562 (2)0.26419 (17)0.68906 (11)0.0450 (4)
H10A0.73620.23070.74360.054*
H10B0.76040.18950.65120.054*
C90.8879 (2)0.3419 (2)0.68825 (11)0.0503 (5)
H90.96980.30880.70970.060*
C20.4392 (2)0.4263 (2)0.57236 (13)0.0501 (4)
H2A0.36390.36570.58430.060*
H2B0.44000.49480.61450.060*
C50.6687 (2)0.52181 (19)0.46369 (11)0.0487 (4)
C140.5561 (2)0.20669 (17)0.54345 (12)0.0501 (5)
H14A0.50900.20970.49170.075*
H14B0.50260.15580.58190.075*
H14C0.64440.16530.53640.075*
C40.5275 (2)0.5893 (2)0.47089 (15)0.0623 (6)
H4A0.53120.65620.51390.075*
H4B0.50680.63470.41980.075*
C130.3712 (3)0.3780 (2)0.82582 (14)0.0648 (6)
H13A0.38810.33790.87830.097*
H13B0.27790.36060.80950.097*
H13C0.38550.47280.82940.097*
C30.4136 (2)0.4919 (2)0.48979 (15)0.0626 (6)
H3A0.40950.42400.44740.075*
H3B0.32600.53840.49080.075*
C170.9909 (3)0.5609 (3)0.64255 (19)0.0764 (7)
H17A1.01110.56890.58520.115*
H17B1.07170.53160.67130.115*
H17C0.96230.64610.66360.115*
C150.6744 (3)0.4361 (3)0.38512 (12)0.0686 (6)
H15A0.76550.40060.37850.103*
H15B0.65160.49050.33860.103*
H15C0.60970.36390.38940.103*
C160.7806 (3)0.6283 (2)0.45821 (16)0.0692 (6)
H16A0.77690.68430.50600.104*
H16B0.76630.68170.41010.104*
H16C0.86910.58590.45510.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0905 (12)0.0292 (6)0.0660 (9)0.0092 (7)0.0235 (9)0.0004 (6)
N0.0606 (9)0.0254 (6)0.0374 (7)0.0015 (6)0.0102 (6)0.0026 (5)
C110.0496 (9)0.0261 (7)0.0323 (7)0.0008 (6)0.0033 (6)0.0010 (6)
C120.0628 (11)0.0324 (8)0.0408 (9)0.0014 (8)0.0090 (8)0.0021 (7)
C60.0440 (8)0.0331 (7)0.0323 (8)0.0005 (7)0.0010 (7)0.0007 (6)
C70.0502 (9)0.0288 (7)0.0335 (8)0.0027 (7)0.0021 (7)0.0017 (6)
C80.0522 (10)0.0522 (11)0.0351 (8)0.0082 (8)0.0043 (7)0.0077 (8)
C10.0464 (9)0.0297 (7)0.0371 (8)0.0011 (7)0.0017 (7)0.0005 (6)
C100.0634 (11)0.0356 (8)0.0361 (8)0.0070 (8)0.0018 (8)0.0003 (7)
C90.0544 (10)0.0588 (11)0.0377 (8)0.0081 (9)0.0093 (8)0.0036 (8)
C20.0456 (10)0.0472 (10)0.0574 (11)0.0023 (8)0.0004 (8)0.0046 (8)
C50.0621 (11)0.0465 (9)0.0374 (8)0.0038 (9)0.0030 (8)0.0109 (8)
C140.0672 (12)0.0362 (8)0.0469 (9)0.0088 (8)0.0039 (9)0.0075 (8)
C40.0727 (14)0.0504 (11)0.0639 (13)0.0082 (10)0.0129 (11)0.0199 (10)
C130.0816 (15)0.0485 (11)0.0644 (13)0.0031 (11)0.0302 (12)0.0019 (10)
C30.0568 (12)0.0622 (12)0.0688 (13)0.0078 (10)0.0165 (10)0.0066 (11)
C170.0675 (14)0.0815 (17)0.0801 (16)0.0270 (13)0.0117 (13)0.0002 (14)
C150.0926 (17)0.0794 (15)0.0337 (9)0.0005 (14)0.0072 (11)0.0078 (10)
C160.0830 (16)0.0633 (13)0.0614 (13)0.0165 (12)0.0042 (12)0.0232 (12)
Geometric parameters (Å, º) top
O—C121.236 (2)C2—H2B0.9700
N—C121.336 (2)C5—C161.525 (3)
N—C111.460 (2)C5—C41.533 (3)
N—H10.8600C5—C151.543 (3)
C11—C101.548 (2)C14—H14A0.9600
C11—C71.548 (2)C14—H14B0.9600
C11—C11.573 (2)C14—H14C0.9600
C12—C131.502 (3)C4—C31.507 (3)
C6—C51.539 (2)C4—H4A0.9700
C6—C11.555 (2)C4—H4B0.9700
C6—C71.565 (2)C13—H13A0.9600
C6—H60.9800C13—H13B0.9600
C7—C81.507 (3)C13—H13C0.9600
C7—H70.9800C3—H3A0.9700
C8—C91.317 (3)C3—H3B0.9700
C8—C171.498 (3)C17—H17A0.9600
C1—C141.526 (2)C17—H17B0.9600
C1—C21.536 (3)C17—H17C0.9600
C10—C91.497 (3)C15—H15A0.9600
C10—H10A0.9700C15—H15B0.9600
C10—H10B0.9700C15—H15C0.9600
C9—H90.9300C16—H16A0.9600
C2—C31.518 (3)C16—H16B0.9600
C2—H2A0.9700C16—H16C0.9600
C12—N—C11122.55 (13)C16—C5—C4109.55 (17)
C12—N—H1118.7C16—C5—C6109.93 (16)
C11—N—H1118.7C4—C5—C6110.77 (16)
N—C11—C10110.76 (13)C16—C5—C15108.28 (19)
N—C11—C7114.70 (13)C4—C5—C15109.93 (19)
C10—C11—C7104.23 (14)C6—C5—C15108.33 (16)
N—C11—C1116.65 (14)C1—C14—H14A109.5
C10—C11—C1118.71 (13)C1—C14—H14B109.5
C7—C11—C189.31 (12)H14A—C14—H14B109.5
O—C12—N122.17 (17)C1—C14—H14C109.5
O—C12—C13121.68 (18)H14A—C14—H14C109.5
N—C12—C13116.15 (15)H14B—C14—H14C109.5
C5—C6—C1119.91 (15)C3—C4—C5112.80 (16)
C5—C6—C7123.30 (14)C3—C4—H4A109.0
C1—C6—C789.32 (12)C5—C4—H4A109.0
C5—C6—H6107.5C3—C4—H4B109.0
C1—C6—H6107.5C5—C4—H4B109.0
C7—C6—H6107.5H4A—C4—H4B107.8
C8—C7—C11105.46 (14)C12—C13—H13A109.5
C8—C7—C6116.76 (14)C12—C13—H13B109.5
C11—C7—C688.15 (12)H13A—C13—H13B109.5
C8—C7—H7114.4C12—C13—H13C109.5
C11—C7—H7114.4H13A—C13—H13C109.5
C6—C7—H7114.4H13B—C13—H13C109.5
C9—C8—C17127.1 (2)C4—C3—C2109.92 (18)
C9—C8—C7109.89 (17)C4—C3—H3A109.7
C17—C8—C7123.02 (18)C2—C3—H3A109.7
C14—C1—C2110.68 (15)C4—C3—H3B109.7
C14—C1—C6116.25 (15)C2—C3—H3B109.7
C2—C1—C6111.46 (13)H3A—C3—H3B108.2
C14—C1—C11118.32 (14)C8—C17—H17A109.5
C2—C1—C11110.66 (14)C8—C17—H17B109.5
C6—C1—C1187.65 (12)H17A—C17—H17B109.5
C9—C10—C11103.70 (14)C8—C17—H17C109.5
C9—C10—H10A111.0H17A—C17—H17C109.5
C11—C10—H10A111.0H17B—C17—H17C109.5
C9—C10—H10B111.0C5—C15—H15A109.5
C11—C10—H10B111.0C5—C15—H15B109.5
H10A—C10—H10B109.0H15A—C15—H15B109.5
C8—C9—C10114.17 (17)C5—C15—H15C109.5
C8—C9—H9122.9H15A—C15—H15C109.5
C10—C9—H9122.9H15B—C15—H15C109.5
C3—C2—C1113.15 (17)C5—C16—H16A109.5
C3—C2—H2A108.9C5—C16—H16B109.5
C1—C2—H2A108.9H16A—C16—H16B109.5
C3—C2—H2B108.9C5—C16—H16C109.5
C1—C2—H2B108.9H16A—C16—H16C109.5
H2A—C2—H2B107.8H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···Oi0.862.182.9962 (18)158
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds